-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathimage_selector_from_video.py
576 lines (461 loc) · 27.9 KB
/
image_selector_from_video.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
'''
Author: Lee Wannacott
Github: https://github.com/LeeWannacott/
'''
from cv2 import cv2
import numpy as np
import math
import easygui
import sys
import pyautogui
'''
Speed up image selection, tagging and bounding boxing of relevant images to then use in machine learning models.
1. The program reads frames/images from a video resizes the original images down into a grid.
2. Allows the user to select a span of images, place bounding boxes and tag the images with text.
3. A text file containing the frames tagging and boxes is produced on each press of the space bar.
4. The next frames from the video are fed into the grid on Space bar.
Esc = Exit the program.
Left mouse click = Select span of images.
Right mouse click = Select bounding boxes.
Middle mouse click = Undo selection.
Space bar = Go to next set of images and store tagged images + frame numbers in text file.
'''
class CreateGrid: pass
grid = CreateGrid()
# ************************************************************************
# variables to be changed by the user:
# Select file path to read video file from.
cap = cv2.VideoCapture('/home/lee/Desktop/image-annotation-tool/video.mp4')
# Number of rows is changeable value. Default value is 7.
grid.number_of_rows = 5
# Variables containing default window size for the grid - default values assume 1080p.
grid.window_width = 1800
grid.window_height = 1000
# Original images from video that will be resized down to fit into grid.
grid.initial_img_width = 1920
grid.initial_img_height = 1080
# ************************************************************************
grid.cell_height= 0
grid.cell_width = 0
grid.number_of_cells= 0
grid.number_of_columns = 0
grid.image_resize_x = 0
grid.image_resize_y = 0
frames_in_video = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
print('Frames in video: ' + str(frames_in_video))
def recalculate_window_stuff():
(_, _, temp_window_width, temp_window_height) = cv2.getWindowImageRect('image_selector_from_video')
if not (temp_window_width == -1 or temp_window_height == -1):
grid.window_width = temp_window_width
grid.window_height = temp_window_height
print(f"Window size: {grid.window_width}x{grid.window_height}")
grid.cell_height = grid.window_height // grid.number_of_rows
grid.cell_width = int(grid.cell_height * (grid.initial_img_width / grid.initial_img_height))
# cell_aspect_ratio and image_aspect_ratio used for assert statement; for debugging.
cell_aspect_ratio = grid.cell_width / grid.cell_height
image_aspect_ratio = grid.initial_img_width / grid.initial_img_height
assert abs(cell_aspect_ratio - image_aspect_ratio) < 0.01, f"cell_aspect_ratio={cell_aspect_ratio} \
image_aspect_ratio={image_aspect_ratio}"
grid.number_of_columns = grid.window_width // grid.cell_width
grid.image_resize_x = grid.cell_width / grid.initial_img_width
grid.image_resize_y = grid.cell_height / grid.initial_img_height
grid.number_of_cells = grid.number_of_rows * grid.number_of_columns
print(f"Cell width: {str(grid.cell_width)}, Cell Height: {str(grid.cell_height)}, "
f"Number of rows: {str(grid.number_of_rows)},Number of Columns: {str(grid.number_of_columns)}")
class ClickFunctionality: pass
mouse_click = ClickFunctionality()
mouse_click.last_mouse_button_clicked = []
mouse_click.enable_draw_on_grid = False
mouse_click.coordinates = []
class ImageSelection: pass
image_selection = ImageSelection()
image_selection.drawn_one_cell_or_span = []
image_selection.tagged_as = ''
image_selection.new_image = ''
image_selection.image_list_temporary = []
image_selection.image_list = []
image_selection.cell_numbers_selection_temporary = []
image_selection.cell_numbers_selection_for_drawing_text = []
class CreateBoundingBox: pass
bounding_box = CreateBoundingBox()
bounding_box.bounding_box_start_coordinates_x_y = ()
bounding_box.list_of_bounding_box_coordinates = []
bounding_box.temp_list_cells_with_bboxes = []
bounding_box.temp_dict_and_cell_number_bboxes = {}
bounding_box.perm_dict_of_cell_num_and_bbox = {}
class CreateTextFile: pass
create_text_file = CreateTextFile()
create_text_file.frame_numbers_list = []
create_text_file.list_of_frames_to_keep = []
create_text_file.image_list_to_print = []
create_text_file.image_list_to_keep = []
create_text_file.cell_numbers_list_for_each_grid = []
def click_event(event, x, y, flags, param):
# Mouse click for left button
global mouseX
global mouseY
global global_click_event
global_click_event = event
mouseX = x
mouseY = y
if event == cv2.EVENT_LBUTTONDOWN and image_selection.tagged_as == '' and \
mouse_click.enable_draw_on_grid == True:
mouse_click.last_mouse_button_clicked.append('left')
# Gets row and column number on left mouse click
col_number = x / grid.cell_width
x1 = math.trunc(col_number)
row_number = y / grid.cell_height
y1 = math.trunc(row_number)
# Get cell number based on coordinates x1, y1
def coordinate_to_cell(x, y):
# !SO 9816024/coordinates-to-grid-box-number
cell_number = int(x + (y * grid.number_of_columns))
# Temporary list for drawing rectangles
image_selection.cell_numbers_selection_temporary.append(cell_number)
image_selection.cell_numbers_selection_for_drawing_text.append(cell_number)
create_text_file.cell_numbers_list_for_each_grid.append(cell_number)
return cell_number
# For use in drawing rectangle function.
cell = coordinate_to_cell(x1, y1)
# Making copy of image for undo function.
image_selection.new_image = param[0].copy()
image_selection.image_list.append(image_selection.new_image)
# Uses the cell number converts to coordinates and draws rectangles
def draw_rectangles(cell_number):
# !SO 8669189/converting-numbers-within-grid-to-their-corresponding-x-y-coordinates
x2 = cell_number % grid.number_of_columns
y2 = cell_number // grid.number_of_columns
cell_x_position = x2 * grid.cell_width
cell_y_position = y2 * grid.cell_height
draw_to_x = cell_x_position + grid.cell_width
draw_to_y = cell_y_position + grid.cell_height
cv2.rectangle(param[0], (int(cell_x_position), int(cell_y_position)), (int(draw_to_x), int(draw_to_y)),
(152,251,152), 2)
cv2.imshow('image_selector_from_video', param[0])
# draw rectangles between two grid images
def draw_rectangles_span():
# Draws rectangle in the first cell
if len(image_selection.cell_numbers_selection_temporary) == 1:
draw_rectangles(cell)
image_selection.drawn_one_cell_or_span.append('one')
if len(image_selection.cell_numbers_selection_temporary) >= 2:
between_backwards = list(
range(int(image_selection.cell_numbers_selection_temporary[-1]), \
int(image_selection.cell_numbers_selection_temporary[-2] + 1))) # backwards
between_forwards = list(
range(int(image_selection.cell_numbers_selection_temporary[-2]), \
int(image_selection.cell_numbers_selection_temporary[-1] + 1))) # forwards
# Draw rectangles backwards
if image_selection.cell_numbers_selection_temporary[-1] < \
image_selection.cell_numbers_selection_temporary[-2]:
for next_cell1 in between_backwards:
draw_rectangles(next_cell1)
# Draw rectangles forwards
if image_selection.cell_numbers_selection_temporary[-1] > \
image_selection.cell_numbers_selection_temporary[-2]:
for next_cell2 in between_forwards:
draw_rectangles(next_cell2)
# Clear temporary list so another two squares can be selected
image_selection.cell_numbers_selection_temporary.clear()
image_selection.drawn_one_cell_or_span.append('span')
if image_selection.tagged_as == '':
# Window_open = True
image_selection.tagged_as = 'window open'
image_selection.tagged_as = easygui.enterbox("What is tagged in the images?")
# replace
if image_selection.tagged_as is not None:
image_selection.tagged_as = image_selection.tagged_as.replace(" ","")
draw_label_on_selection_span_of_images()
####
if image_selection.tagged_as != 'window open':
if image_selection.tagged_as is None:
image_selection.tagged_as = ''
image_selection.image_list_temporary.append(image_selection.tagged_as)
image_selection.tagged_as = ''
def draw_label(cell_number):
# https://stackoverflow.com/questions/8669189/converting-numbers-within-grid-to-their-corresponding-x-y-coordinates
x2 = cell_number % grid.number_of_columns
y2 = cell_number // grid.number_of_columns
cell_x_position = x2 * grid.cell_width
cell_y_position = y2 * grid.cell_height
cv2.putText(img=param[0], text=image_selection.tagged_as, org=(cell_x_position+5, cell_y_position+20),
fontFace=cv2.FONT_ITALIC, fontScale=0.5, color=(156,217,107),
thickness=1, lineType=cv2.LINE_AA)
cv2.imshow('image_selector_from_video', param[0])
def draw_label_on_selection_span_of_images():
if len(image_selection.cell_numbers_selection_for_drawing_text) >= 2:
between_backwards = list(
range(int(image_selection.cell_numbers_selection_for_drawing_text[-1]),
int(image_selection.cell_numbers_selection_for_drawing_text[-2] + 1))) # backwards
between_forwards = list(
range(int(image_selection.cell_numbers_selection_for_drawing_text[-2]),
int(image_selection.cell_numbers_selection_for_drawing_text[-1] + 1))) # forwards
# Draw rectangles backwards
if image_selection.cell_numbers_selection_for_drawing_text[-1] < \
image_selection.cell_numbers_selection_for_drawing_text[
-2]:
for backward_cell in between_backwards:
draw_label(backward_cell)
# Draw rectangles forwards
if image_selection.cell_numbers_selection_for_drawing_text[-1] > \
image_selection.cell_numbers_selection_for_drawing_text[
-2]:
for forward_cell in between_forwards:
draw_label(forward_cell)
draw_rectangles_span()
elif event == cv2.EVENT_MBUTTONUP and image_selection.tagged_as == '' and \
mouse_click.enable_draw_on_grid == True and len(mouse_click.last_mouse_button_clicked) > 0 \
and mouse_click.last_mouse_button_clicked[-1] == 'left':
# Allows undo if one image selected.
if len(image_selection.image_list) >= 1 and image_selection.drawn_one_cell_or_span[-1] == 'one':
param[0] = image_selection.image_list[-1]
cv2.imshow('image_selector_from_video', image_selection.image_list[-1])
cv2.waitKey(1)
image_selection.image_list.pop()
create_text_file.cell_numbers_list_for_each_grid.pop()
mouse_click.last_mouse_button_clicked.pop()
image_selection.drawn_one_cell_or_span.pop()
image_selection.cell_numbers_selection_temporary.clear()
# Allows undo if span of images selected.
elif len(image_selection.image_list) >= 2 and image_selection.drawn_one_cell_or_span[-1] == 'span':
param[0] = image_selection.image_list[-2]
cv2.imshow('image_selector_from_video', image_selection.image_list[-2])
cv2.waitKey(1)
# Popping lists to undo selection span of images
image_selection.image_list.pop()
image_selection.image_list.pop()
mouse_click.last_mouse_button_clicked.pop()
mouse_click.last_mouse_button_clicked.pop()
image_selection.drawn_one_cell_or_span.pop()
image_selection.drawn_one_cell_or_span.pop()
create_text_file.cell_numbers_list_for_each_grid.pop()
create_text_file.cell_numbers_list_for_each_grid.pop()
if len(image_selection.image_list_temporary) > 0:
image_selection.image_list_temporary.pop()
elif event == cv2.EVENT_MBUTTONUP and mouse_click.enable_draw_on_grid == True and \
len(mouse_click.last_mouse_button_clicked) > 0 and mouse_click.last_mouse_button_clicked[-1] == 'right':
if len(image_selection.image_list) >= 1 and mouse_click.last_mouse_button_clicked[-1] == 'right':
param[0] = image_selection.image_list[-1]
cv2.imshow('image_selector_from_video', image_selection.image_list[-1])
cv2.waitKey(1)
image_selection.image_list.pop()
mouse_click.last_mouse_button_clicked.pop()
# Allows for the potential to have multiple boundary boxes in same cell
if len(bounding_box.temp_dict_and_cell_number_bboxes[bounding_box.temp_list_cells_with_bboxes[-1]]) > 4:
# Removing four coordinates if more than one boundary box in cell.
for i in range(4):
del bounding_box.temp_dict_and_cell_number_bboxes[bounding_box.temp_list_cells_with_bboxes[-1]][-1]
# Removes boundary boxes if in a single cell
elif len(bounding_box.temp_dict_and_cell_number_bboxes[bounding_box.temp_list_cells_with_bboxes[-1]]) == 4:
bounding_box.temp_dict_and_cell_number_bboxes.pop(bounding_box.temp_list_cells_with_bboxes[-1])
# Removes cell number from temporary list
bounding_box.temp_list_cells_with_bboxes.pop()
# Allow bounding boxes to be places over images
elif global_click_event == cv2.EVENT_RBUTTONDOWN and len(image_selection.drawn_one_cell_or_span) > 0 \
and image_selection.drawn_one_cell_or_span[-1] == 'span':
def get_bounding_box_start_coordinates(x, y):
x_start_boundary = x
y_start_boundary = y
# Calculates starting cell number
col_number = x / grid.cell_width
x1 = math.trunc(col_number)
row_number = y / grid.cell_height
y1 = math.trunc(row_number)
cell_number_on_start_of_drawing = int(x1 + (y1 * grid.number_of_columns))
return x_start_boundary, y_start_boundary, cell_number_on_start_of_drawing
bounding_box.bounding_box_start_coordinates_x_y = get_bounding_box_start_coordinates(x, y)
# Handle visual drawing of placing bounding box; to give user feedback of where they are placing bbox.
global allow_draw_bbox
allow_draw_bbox = True
while allow_draw_bbox == True:
draw_bbox_images = param[0].copy()
cv2.rectangle(draw_bbox_images, (bounding_box.bounding_box_start_coordinates_x_y[0], \
bounding_box.bounding_box_start_coordinates_x_y[1]),(mouseX, mouseY), (32,178,170), 2)
cv2.imshow('image_selector_from_video',draw_bbox_images)
cv2.waitKey(10)
elif event == cv2.EVENT_RBUTTONUP and len(image_selection.drawn_one_cell_or_span) > 0 \
and image_selection.drawn_one_cell_or_span[-1] == 'span':
# Get cell number at end of bounding box
col_number = x / grid.cell_width
cell_x = math.trunc(col_number)
row_number = y / grid.cell_height
cell_y = math.trunc(row_number)
cell_number_on_end_of_drawing = int(cell_x + (cell_y * grid.number_of_columns))
# Minus x,y positions to get cells relative position
cell_x_position = cell_x * grid.cell_width
cell_y_position = cell_y * grid.cell_height
allow_draw_bbox = False
def draw_boundary_box(x, y, start_boundary_x_and_y):
# Making copy for un-drawing bounding box
new_image_boundary = param[0].copy()
image_selection.image_list.append(new_image_boundary)
# Draws bounding box
end_boundary_x_and_y = (x, y)
cv2.rectangle(param[0], (start_boundary_x_and_y[0], start_boundary_x_and_y[1]),
(end_boundary_x_and_y[0], end_boundary_x_and_y[1]), (0,255,127), 2)
cv2.imshow('image_selector_from_video', param[0])
# Used for un-drawing bounding box logic
mouse_click.last_mouse_button_clicked.append('right')
# Makes the coordinates relative to within that cell rather than the whole window.
cell_start_relative_position_x = start_boundary_x_and_y[0] - cell_x_position
cell_start_relative_position_y = start_boundary_x_and_y[1] - cell_y_position
cell_end_relative_position_x = end_boundary_x_and_y[0] - cell_x_position
cell_end_relative_position_y = end_boundary_x_and_y[1] - cell_y_position
# Resizing coordinates back to the those of the original sized images rounded to whole pixels.
cell_start_relative_position_x_resized = round(cell_start_relative_position_x / grid.image_resize_x)
cell_start_relative_position_y_resized = round(cell_start_relative_position_y / grid.image_resize_y)
cell_end_relative_position_x_resized = round(cell_end_relative_position_x / grid.image_resize_x)
cell_end_relative_position_y_resized = round(cell_end_relative_position_y / grid.image_resize_y)
# Gets bounding box x,y start and x,y end, relative to that individual cell.
list_bounding_box_coordinates = [cell_start_relative_position_x_resized, cell_start_relative_position_y_resized,
cell_end_relative_position_x_resized, cell_end_relative_position_y_resized]
# Cells the user have selected that contain bounding boxes
bounding_box.temp_list_cells_with_bboxes.append(bounding_box.bounding_box_start_coordinates_x_y[2])
# Checks if there is already a key from there already being a bounding box in the cell
if bounding_box.bounding_box_start_coordinates_x_y[2] in bounding_box.temp_dict_and_cell_number_bboxes:
bounding_box.temp_dict_and_cell_number_bboxes[bounding_box.bounding_box_start_coordinates_x_y[2]] \
.extend(list_bounding_box_coordinates)
else:
bounding_box.temp_dict_and_cell_number_bboxes[bounding_box.bounding_box_start_coordinates_x_y[2]] = \
list_bounding_box_coordinates
# Checks if its still within the same cell and if so draws bounding box
if bounding_box.bounding_box_start_coordinates_x_y[2] == cell_number_on_end_of_drawing and \
len(create_text_file.cell_numbers_list_for_each_grid) > 0:
# Check if drawing boundary boxes in span of images that has been selected.
if bounding_box.bounding_box_start_coordinates_x_y[2] in range(create_text_file.cell_numbers_list_for_each_grid[-2], \
create_text_file.cell_numbers_list_for_each_grid[-1]+1) \
or bounding_box.bounding_box_start_coordinates_x_y[2] in range(create_text_file.cell_numbers_list_for_each_grid[-1], \
create_text_file.cell_numbers_list_for_each_grid[-2]+1):
draw_boundary_box(x, y, bounding_box.bounding_box_start_coordinates_x_y)
# Check if camera opened successfully.
if not cap.isOpened():
print("Error opening video stream or file")
sys.exit()
index = 0
cv2.namedWindow('image_selector_from_video', cv2.WINDOW_NORMAL)
cv2.resizeWindow('image_selector_from_video', grid.window_width, grid.window_height)
# Read until video is completed
def image_grid(index, x_offset=0, y_offset=0, i=0):
cap.set(1, index)
recalculate_window_stuff()
# Resetting large image/grid to black each time.
l_img = np.zeros((grid.window_height, grid.window_width, 3), np.uint8)
cv2.imshow('image_selector_from_video', l_img)
cv2.waitKey(1)
index_for_frame_list = index
while i < grid.number_of_cells:
mouse_click.enable_draw_on_grid = False
while cap.isOpened():
# Capture frame-by-frame
ret, frame = cap.read()
if ret:
# Resize image
s_image = cv2.resize(frame, (0, 0), None, grid.image_resize_x, grid.image_resize_y)
# Put small images onto large image
x_offset = (i % grid.number_of_columns) * int(grid.cell_width)
y_offset = (i // grid.number_of_columns) * int(grid.cell_height)
l_img[y_offset:y_offset + s_image.shape[0], x_offset:x_offset + s_image.shape[1]] = s_image
# Show each small images drawn
cv2.imshow('image_selector_from_video', l_img)
cv2.waitKey(1)
# i for count of images, index keeps track of where you are in frames
i += 1
index += 1
if i == grid.number_of_cells or index == frames_in_video:
mouse_click.enable_draw_on_grid = True
# Parameters passed to mouse click function
param = [l_img, index_for_frame_list]
while True:
cv2.setMouseCallback('image_selector_from_video', click_event, param)
c = cv2.waitKey(1)
if c == 27: # Escape
print('Esc pressed to Exit')
sys.exit()
elif c == 32: # Space
print('Spacebar pressed')
# Getting rid of an uneven number of cells in lists
if len(image_selection.cell_numbers_selection_temporary) % 2 == 0:
pass
else:
image_selection.cell_numbers_selection_temporary.pop()
if len(create_text_file.cell_numbers_list_for_each_grid) % 2 == 0:
pass
else:
create_text_file.cell_numbers_list_for_each_grid.pop()
# Clears lists for the case of single selected rectangle
image_selection.cell_numbers_selection_temporary.clear()
image_selection.image_list.clear()
# Creates a image list from the temporary image lists of each grid of images.
def create_permanent_image_list():
for images in image_selection.image_list_temporary:
create_text_file.image_list_to_keep.append(images)
create_permanent_image_list()
# Transforms cell number in temporary grid into frame and appends to frame numbers list
def each_grid_cells_into_frames_list():
for cell in create_text_file.cell_numbers_list_for_each_grid:
frame_number = int(param[1]) + int(cell)
create_text_file.frame_numbers_list.append(frame_number)
each_grid_cells_into_frames_list()
# Calculates frames spans backwards and forwards
def make_list_of_frames_to_keep(image_count=0):
# Putting into a list of two's for calculating frame spans
frame_numbers_list_sliced = zip(create_text_file.frame_numbers_list[0::2], \
create_text_file.frame_numbers_list[1::2])
# Clear lists when space pressed
create_text_file.list_of_frames_to_keep.clear()
create_text_file.image_list_to_print.clear()
for numbers in frame_numbers_list_sliced:
# Forward frame spans
if numbers[0] < numbers[1]:
for frames1 in range(numbers[0], numbers[1] + 1):
create_text_file.list_of_frames_to_keep.append(frames1)
create_text_file.image_list_to_print.append(create_text_file. \
image_list_to_keep[image_count])
image_count += 1
# Backward frame spans
elif numbers[0] > numbers[1]:
for frames2 in range(numbers[1], numbers[0] + 1):
create_text_file.list_of_frames_to_keep.append(frames2)
create_text_file.image_list_to_print.append(create_text_file. \
image_list_to_keep[image_count])
image_count += 1
make_list_of_frames_to_keep()
def bounding_box_cell_keys_to_frames():
# Changing the key of dict: cell numbers into frame numbers.
temp_dict_to_append = {k + int(param[1]): v for (k, v) in bounding_box.\
temp_dict_and_cell_number_bboxes.items()}
bounding_box.perm_dict_of_cell_num_and_bbox.update(temp_dict_to_append)
bounding_box_cell_keys_to_frames()
# Clear temp dict of bounding boxes ready for next lot of frames to have bounding boxes.
bounding_box.temp_dict_and_cell_number_bboxes.clear()
# Clearing temporary lists, so ready for the next lot of images.
create_text_file.cell_numbers_list_for_each_grid.clear()
image_selection.image_list_temporary.clear()
def creates_text_file():
# Creating text file with frame numbers and what user tags images as.
file = open('List_of_images.txt', 'w')
for i, frame in enumerate(create_text_file.list_of_frames_to_keep):
if frame in bounding_box.perm_dict_of_cell_num_and_bbox.keys():
file.write(f'{frame} {create_text_file.image_list_to_print[i]} \
{bounding_box.perm_dict_of_cell_num_and_bbox[frame]} \n')
else:
file.write(f'{frame} {create_text_file.image_list_to_print[i]} \n')
file.close()
# Output text file on each press of Space.
creates_text_file()
# Continue calling function if hasn't hit end of video
if frames_in_video != index:
return image_grid(index)
# If Space bar pressed and end of the video exit out of loop and save tagging.
elif (frames_in_video == index and index >
grid.number_of_cells):
creates_text_file()
return
# Calls function with index of 0.
image_grid(index)
# When everything done, release the video capture object.
cap.release()
# Closes all the windows.
cv2.destroyAllWindows()
# Shuts program down.
sys.exit()