forked from shuboc/LeetCode-2
-
Notifications
You must be signed in to change notification settings - Fork 15
/
prefix-and-suffix-search.py
123 lines (104 loc) · 3.63 KB
/
prefix-and-suffix-search.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
# Time: ctor: O(w * l^2), w is the number of words, l is the word length on average
# search: O(p + s) , p is the length of the prefix, s is the length of the suffix,
# Space: O(t), t is the number of trie nodes
# Given many words, words[i] has weight i.
#
# Design a class WordFilter that supports one function,
# WordFilter.f(String prefix, String suffix).
# It will return the word with given prefix and suffix with maximum weight.
# If no word exists, return -1.
#
# Examples:
# Input:
# WordFilter(["apple"])
# WordFilter.f("a", "e") // returns 0
# WordFilter.f("b", "") // returns -1
# Note:
# words has length in range [1, 15000].
# For each test case, up to words.length queries WordFilter.f may be made.
# words[i] has length in range [1, 10].
# prefix, suffix have lengths in range [0, 10].
# words[i] and prefix, suffix queries consist of lowercase letters only.
import collections
class WordFilter(object):
def __init__(self, words):
"""
:type words: List[str]
"""
_trie = lambda: collections.defaultdict(_trie)
self.__trie = _trie()
for weight, word in enumerate(words):
word += '#'
for i in xrange(len(word)):
cur = self.__trie
cur["_weight"] = weight
for j in xrange(i, 2*len(word)-1):
cur = cur[word[j%len(word)]]
cur["_weight"] = weight
def f(self, prefix, suffix):
"""
:type prefix: str
:type suffix: str
:rtype: int
"""
cur = self.__trie
for letter in suffix + '#' + prefix:
if letter not in cur:
return -1
cur = cur[letter]
return cur["_weight"]
# Time: ctor: O(w * l), w is the number of words, l is the word length on average
# search: O(p + s + max(m, n)), p is the length of the prefix, s is the length of the suffix,
# m is the number of the prefix match, n is the number of the suffix match
# Space: O(w * l)
class Trie(object):
def __init__(self):
_trie = lambda: collections.defaultdict(_trie)
self.__trie = _trie()
def insert(self, word, i):
def add_word(cur, i):
if "_words" not in cur:
cur["_words"] = []
cur["_words"].append(i)
cur = self.__trie
add_word(cur, i)
for c in word:
cur = cur[c]
add_word(cur, i)
def find(self, word):
cur = self.__trie
for c in word:
if c not in cur:
return []
cur = cur[c]
return cur["_words"]
class WordFilter2(object):
def __init__(self, words):
"""
:type words: List[str]
"""
self.__prefix_trie = Trie()
self.__suffix_trie = Trie()
for i in reversed(xrange(len(words))):
self.__prefix_trie.insert(words[i], i)
self.__suffix_trie.insert(words[i][::-1], i)
def f(self, prefix, suffix):
"""
:type prefix: str
:type suffix: str
:rtype: int
"""
prefix_match = self.__prefix_trie.find(prefix)
suffix_match = self.__suffix_trie.find(suffix[::-1])
i, j = 0, 0
while i != len(prefix_match) and j != len(suffix_match):
if prefix_match[i] == suffix_match[j]:
return prefix_match[i]
elif prefix_match[i] > suffix_match[j]:
i += 1
else:
j += 1
return -1
# Your WordFilter object will be instantiated and called as such:
# obj = WordFilter(words)
# param_1 = obj.f(prefix,suffix)