forked from shuboc/LeetCode-2
-
Notifications
You must be signed in to change notification settings - Fork 15
/
profitable-schemes.py
57 lines (53 loc) · 1.77 KB
/
profitable-schemes.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
# Time: O(n * p * g)
# Space: O(p * g)
# There are G people in a gang, and a list of various crimes they could commit.
#
# The i-th crime generates a profit[i] and requires group[i] gang members to participate.
#
# If a gang member participates in one crime,
# that member can't participate in another crime.
#
# Let's call a profitable scheme any subset of these crimes that
# generates at least P profit,
# and the total number of gang members participating in that subset of crimes is at most G.
#
# How many schemes can be chosen? Since the answer may be very large, return it modulo 10^9 + 7.
#
# Example 1:
#
# Input: G = 5, P = 3, group = [2,2], profit = [2,3]
# Output: 2
# Explanation:
# To make a profit of at least 3, the gang could either commit crimes 0 and 1, or just crime 1.
# In total, there are 2 schemes.
# Example 2:
#
# Input: G = 10, P = 5, group = [2,3,5], profit = [6,7,8]
# Output: 7
# Explanation:
# To make a profit of at least 5, the gang could commit any crimes, as long as they commit one.
# There are 7 possible schemes: (0), (1), (2), (0,1), (0,2), (1,2), and (0,1,2).
#
# Note:
# - 1 <= G <= 100
# - 0 <= P <= 100
# - 1 <= group[i] <= 100
# - 0 <= profit[i] <= 100
# - 1 <= group.length = profit.length <= 100
import itertools
class Solution(object):
def profitableSchemes(self, G, P, group, profit):
"""
:type G: int
:type P: int
:type group: List[int]
:type profit: List[int]
:rtype: int
"""
dp = [[0 for _ in xrange(G+1)] for _ in xrange(P+1)]
dp[0][0] = 1
for p, g in itertools.izip(profit, group):
for i in reversed(xrange(P+1)):
for j in reversed(xrange(G-g+1)):
dp[min(i+p, P)][j+g] += dp[i][j]
return sum(dp[P]) % (10**9 + 7)