forked from pamparamm/sd-perturbed-attention
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpag_trt_nodes.py
110 lines (88 loc) · 3.65 KB
/
pag_trt_nodes.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
from comfy.model_patcher import ModelPatcher
from comfy.samplers import calc_cond_batch
from .pag_utils import parse_unet_blocks, perturbed_attention, rescale_guidance
class TRTAttachPag:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"model": ("MODEL",),
"unet_block": (["input", "middle", "output"], {"default": "middle"}),
"unet_block_id": ("INT", {"default": 0}),
},
"optional": {
"unet_block_list": ("STRING", {"default": ""}),
},
}
RETURN_TYPES = ("MODEL",)
FUNCTION = "attach"
CATEGORY = "TensorRT"
def attach(
self,
model: ModelPatcher,
unet_block: str = "middle",
unet_block_id: int = 0,
unet_block_list: str = "",
):
m = model.clone()
if unet_block_list:
blocks = parse_unet_blocks(model, unet_block_list)
else:
blocks = [(unet_block, unet_block_id, None)]
# Replace Self-attention with PAG
for block in blocks:
layer, number, index = block
m.set_model_attn1_replace(perturbed_attention, layer, number, index)
return (m,)
class TRTPerturbedAttention:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"model_base": ("MODEL",),
"model_pag": ("MODEL",),
"scale": ("FLOAT", {"default": 3.0, "min": 0.0, "max": 100.0, "step": 0.1, "round": 0.01}),
"adaptive_scale": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.001, "round": 0.0001}),
"sigma_start": ("FLOAT", {"default": -1.0, "min": -1.0, "max": 10000.0, "step": 0.01, "round": False}),
"sigma_end": ("FLOAT", {"default": -1.0, "min": -1.0, "max": 10000.0, "step": 0.01, "round": False}),
"rescale": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.01}),
"rescale_mode": (["full", "partial"], {"default": "full"}),
},
}
RETURN_TYPES = ("MODEL",)
FUNCTION = "patch"
CATEGORY = "TensorRT"
def patch(
self,
model_base: ModelPatcher,
model_pag: ModelPatcher,
scale: float = 3.0,
adaptive_scale: float = 0.0,
sigma_start: float = -1.0,
sigma_end: float = -1.0,
rescale: float = 0.0,
rescale_mode: str = "full",
):
m = model_base.clone()
sigma_start = float("inf") if sigma_start < 0 else sigma_start
def post_cfg_function(args):
"""CFG+PAG"""
model = args["model"]
cond_pred = args["cond_denoised"]
cond = args["cond"]
cfg_result = args["denoised"]
sigma = args["sigma"]
x = args["input"]
signal_scale = scale
if adaptive_scale > 0:
t = model.model_sampling.timestep(sigma)[0].item()
signal_scale -= scale * (adaptive_scale**4) * (1000 - t)
if signal_scale < 0:
signal_scale = 0
if signal_scale == 0 or not (sigma_end < sigma[0] <= sigma_start):
return cfg_result
(pag_cond_pred,) = calc_cond_batch(model_pag.model, [cond], x, sigma, model_pag.model_options)
pag = (cond_pred - pag_cond_pred) * signal_scale
return cfg_result + rescale_guidance(pag, cond_pred, cfg_result, rescale, rescale_mode)
m.set_model_sampler_post_cfg_function(post_cfg_function)
return (m,)