-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathClimateChange-Final.py
924 lines (543 loc) · 20 KB
/
ClimateChange-Final.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
#!/usr/bin/env python
# coding: utf-8
# # CLIMATE CHANGE TWITTER SENTIMENT ANALYSIS
# >**Libraries Required**
# >
# > - numpy
# >
# > - pandas
# >
# > - imblearn
# >
# > - sklearn (scikit-learn)
# >
# > - keras
# >
# > - copy
# >
# > - re
# >
# > - nltk
# >
# > - itertools
# >
# > - wordcloud
# >
# > - matplotlib
# >
# > - seaborn
# >
# > - warnings
# > Dataset Link:
# >
# > - https://www.kaggle.com/datasets/edqian/twitter-climate-change-sentiment-dataset
# > Run Time: 5-8 minutes on Mac Silicon M1 Pro
# Import Required Libraries
# In[1]:
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
import warnings
warnings.filterwarnings('ignore')
# Import Tweets Dataset to a pandas Dataframe
# In[2]:
df = pd.read_csv('twitter_sentiment_data.csv')
df
# > **Classes:**
# > - 2(News): the tweet links to factual news about climate change (This Class values are removed)
# > - 1(Pro): the tweet supports the belief of man-made climate change
# > - 0(Neutral: the tweet neither supports nor refutes the belief of man-made climate change
# > - -1(Anti): the tweet does not believe in man-made climate change
# In[3]:
count_plot = sns.countplot(data = df,
y = 'sentiment')
count_plot.bar_label(count_plot.containers[0])
plt.show()
# From the graph it is clear that the dataset is class imbalanced. Hence we use Random Oversampling Technique to balance the data
# In[4]:
from imblearn.over_sampling import *
# In[5]:
X = df[['message','tweetid']]
y = df['sentiment']
# In[6]:
ros = RandomOverSampler(random_state=0)
X_resampled, y_resampled = ros.fit_resample(X, y)
# In[7]:
df = X_resampled.join(y_resampled)
# In[8]:
df
# Visualizing the results
# In[9]:
count_plot = sns.countplot(data = df,
y = 'sentiment')
count_plot.bar_label(count_plot.containers[0])
plt.show()
# >We are not Using the News kind of tweets for Sentiment Analysis.
# Hence, removing tweets of class News
# In[10]:
df.drop(df[df['sentiment'] == 2].index, inplace = True)
df = df.reset_index()
df = df.drop('index', 1)
# In[11]:
#for col in df.columns:
# print(col)
# In[12]:
df.head()
# In[13]:
df.sentiment.unique()
# In the below line of code, we have duplicated the dataframe to use for Machine Learning Model Training. We have done this because when we experienced variable data type clash after Exploratory Data Analysis
# In[14]:
from copy import deepcopy
df2 = deepcopy(df)
# In[15]:
labels = df.sentiment.unique()
# In[16]:
count_plot = sns.countplot(data = df,
y = 'sentiment')
count_plot.bar_label(count_plot.containers[0])
plt.show()
# We Observe that there are more number of tweets in the class
# In[17]:
plt.pie(df["sentiment"].value_counts(),
labels=labels,
autopct="%1.0f%%",
startangle=90,
explode=tuple([0.1] * len(labels)))
plt.show()
# In[18]:
count = df.sentiment.value_counts()
count.name = "Count"
percent = df.sentiment.value_counts(normalize=True)
percent.name = "Percentage"
display(pd.concat([count, percent], axis=1))
# In[19]:
df_pro = df[df.sentiment == 1]
df_neutral = df[df.sentiment == 0]
df_anti = df[df.sentiment == -1]
#df_news = df[df.sentiment == 2]
# In[20]:
df.message.str.len().describe()
# In[21]:
sns.distplot(df.message.str.len())
plt.show()
# >**Tweet Stats**
# >
# >Largest Tweet: 623 character
# >
# >Shortest Tweet: 7 characters
# >
# >Average Length is 120 characters
# In[22]:
plt.figure(figsize=(10, 10))
sns.boxplot(x="sentiment", y = df["message"].str.len(), data=df)
plt.title("Tweet Length Distribution for each Sentiment")
plt.show()
# In[23]:
import re
import nltk
import itertools
# Finding few most frequent words for all three classes
# In[24]:
top20 = {}
for sentiment, group in df.groupby("sentiment"):
freq_words = group["message"].apply(lambda tweet: re.findall(r"#(\w+)", tweet))
freq_words = itertools.chain(*freq_words)
freq_words = [ht.lower() for ht in freq_words]
frequency = nltk.FreqDist(freq_words)
df_freq_words = pd.DataFrame({
"freq_words": list(frequency.keys()),
"counts": list(frequency.values()),
})
top20_htags = df_freq_words.nlargest(20, columns=["counts"])
top20[sentiment] = top20_htags.reset_index(drop=True)
display(pd.concat(top20, axis=1).head(n=10))
# Visualize the frequent words and frequency
# In[25]:
fig, axes = plt.subplots(3, 1, figsize=(35, 50))
counter = 0
for sentiment, top in top20.items():
sns.barplot(data=top,
y="freq_words",
x="counts",
ax=axes[counter],
palette = 'flare')
axes[counter].set_title(f"Most frequent words reflecting class {sentiment}", fontsize=35)
counter += 1
plt.show()
# In[26]:
from sklearn.feature_extraction.text import CountVectorizer
# In[27]:
frequency = {}
by_sentiment = df.groupby("sentiment")
for sentiment, group in df.groupby("sentiment"):
cv = CountVectorizer(stop_words="english")
words = cv.fit_transform(group["message"])
n_words = words.sum(axis=0)
word_freq = [(word, n_words[0, idx]) for word, idx in cv.vocabulary_.items()]
word_freq = sorted(word_freq, key=lambda x: x[1], reverse=True)
freq = pd.DataFrame(word_freq, columns=["word", "freq"])
frequency[sentiment] = freq.head(n=25)
to_view = pd.concat(frequency, axis=1).head(n=25)
display(to_view)
# Cleaning the tweets and tokenizing
# In[28]:
import re
import nltk
from nltk.corpus import stopwords
nltk.download('stopwords')
from nltk.tokenize import word_tokenize
nltk.download('punkt')
def clean_text(d):
pattern = r'[^a-zA-Z\s]'
text = re.sub(pattern, '', d)
return text
def clean_stopword(d):
stop_words = stopwords.words('english')
return " ".join([w.lower() for w in d.split() if w.lower() not in stop_words and len(w) > 1])
def tokenize(d):
return word_tokenize(d)
# In[29]:
df['final_text']= df.message.apply(clean_text).apply(clean_stopword).apply(tokenize)
df.final_text.head()
# Use Vader Analyser to analyse sentiment analysis
# In[30]:
nltk.download('vader_lexicon')
from nltk.sentiment.vader import SentimentIntensityAnalyzer
vader = SentimentIntensityAnalyzer()
vader.polarity_scores(" ".join(df.final_text[0]))
# In[31]:
texts = ' '
for i in range(5):
print(df.final_text[i])
# In[32]:
texts = [" ".join(df.final_text[i]) for i in range(len(df))]
print(df.message[0])
print(texts[0])
print(vader.polarity_scores(texts[0]), f'--> Class as per dataset: {df.sentiment[0]}', '\n')
print(df.message[1])
print(texts[1])
print(vader.polarity_scores(texts[1]), f'--> Class as per dataset: {df.sentiment[1]}', '\n')
print(df.message[10])
print(texts[10])
print(vader.polarity_scores(texts[10]), f'--> Class as per dataset: {df.sentiment[10]}', '\n')
print(df.message[50])
print(texts[50])
print(vader.polarity_scores(texts[50]), f'--> Class as per dataset: {df.sentiment[50]}', '\n')
print(df.message[100])
print(texts[100])
print(vader.polarity_scores(texts[100]), f'--> Class as per dataset: {df.sentiment[100]}', '\n')
print(df.message[500])
print(texts[500])
print(vader.polarity_scores(texts[500]), f'--> Class as per dataset: {df.sentiment[500]}', '\n')
print(df.message[1000])
print(texts[1000])
print(vader.polarity_scores(texts[1000]), f'--> Class as per dataset: {df.sentiment[1000]}', '\n')
# >We observe that the scores and the actual classification are not exactly matching much
# Preparing Data for rxtracting Buzzwords using wordcloud.
# In[33]:
pro = df[df.sentiment == 1].message.apply(clean_text).apply(clean_stopword).apply(tokenize)
pro = [" ".join(pro.values[i]) for i in range(len(pro))]
pro = [" ".join(pro)][0]
anti = df[df.sentiment == -1].message.apply(clean_text).apply(clean_stopword).apply(tokenize)
anti = [" ".join(anti.values[i]) for i in range(len(anti))]
anti = [" ".join(anti)][0]
neutral = df[df.sentiment == 0].message.apply(clean_text).apply(clean_stopword).apply(tokenize)
neutral = [" ".join(neutral.values[i]) for i in range(len(neutral))]
neutral = [" ".join(neutral)][0]
print(len(pro), len(anti), len(neutral))
# Plot Wordclouds of Buzzwords
# In[34]:
from wordcloud import WordCloud
# In[35]:
plt.figure(figsize=(18,15))
wc_pro = WordCloud(min_font_size=3,max_words=200,width=1600,height=720,
colormap = 'Set2', background_color='white').generate(pro)
plt.imshow(wc_pro,interpolation='bilinear')
plt.xticks([])
plt.yticks([])
plt.grid(False)
# In[36]:
plt.figure(figsize=(18,15))
wc_anti = WordCloud(min_font_size=3,max_words=200,width=1600,height=720,
colormap = 'Set2', background_color='white').generate(anti)
plt.imshow(wc_anti,interpolation='bilinear')
plt.xticks([])
plt.yticks([])
plt.grid(False)
# In[37]:
plt.figure(figsize=(18,15))
wc_neutral = WordCloud(min_font_size=3,max_words=200,width=1600,height=720,
colormap = 'Set2', background_color='white').generate(neutral)
plt.imshow(wc_neutral,interpolation='bilinear')
plt.xticks([])
plt.yticks([])
plt.grid(False)
# In[38]:
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.ensemble import RandomForestClassifier as RFC
from sklearn.naive_bayes import MultinomialNB as MNB
from sklearn.naive_bayes import ComplementNB as CNB
from sklearn.neighbors import KNeighborsClassifier as KNN
from sklearn.svm import SVC as SVC
from sklearn.linear_model import LogisticRegression as LGR
from sklearn.metrics import *
import warnings
warnings.filterwarnings('ignore')
# In[39]:
df2.head()
# In[40]:
X = df2["message"]
y = df2["sentiment"]
X_train_ml, X_test_ml, y_train_ml, y_test_ml = train_test_split(X, y, test_size=0.2, random_state=42)
# We use TFIDf Vectorizer to score the frequency of words. And these scores highlight the words that influence the sentiment. We train the models using these TFIDF Scores
# In[41]:
tfidf = TfidfVectorizer()
tfidf.fit_transform(X_train_ml)
# Train Logistic Regression Model
# In[42]:
log_model = LGR(class_weight="balanced", max_iter=1000)
log_model.fit(tfidf.transform(X_train_ml), y_train_ml)
log_preds = log_model.predict(tfidf.transform(X_test_ml))
# We train multiple models with different continuous values of nearest neighbors.
# We find the model which has optimal train and test scores (we choose optimal number of neighbors that doesnt overfit the model nor lose the data points which miss features)
# In[43]:
#k_values = []
#train_scores = []
#test_scores = []
#for k in range (1,31):
# temp_knn_k = KNN(n_neighbors=k)
# temp_knn_k.fit(tfidf.transform(X_train_ml), y_train_ml)
# y_pred_temp_knn = temp_knn_k.predict(tfidf.transform(X_test_ml))
# train_score=temp_knn_k.score(tfidf.transform(X_train_ml),y_train_ml)
# test_score=temp_knn_k.score(tfidf.transform(X_test_ml),y_test_ml)
# train_scores.append(train_score)
# test_scores.append(test_score)
# k_values.append(k)
#print(k_values)
#print(train_scores)
#print(test_scores)
#plt.plot(k_values,train_scores, color='red',label='Training Score')
#plt.plot(k_values,test_scores, color='blue',label='Testing Score')
#plt.legend(loc="best")
#plt.xlabel('K values')
#plt.ylabel('Scores')
# >We find model trained with optimally 15 neighbors is a good choice
# In[44]:
#K-Nearest Neighbour with euclidean distance
knn_model = KNN(n_neighbors=15, weights = 'distance')
knn_model.fit(tfidf.transform(X_train_ml), y_train_ml)
knn_preds = knn_model.predict(tfidf.transform(X_test_ml))
# We trained a Naive Bayes classifier
# In[45]:
#Multinomial Naive Bayes
mnb_model = MNB()
mnb_model.fit(tfidf.transform(X_train_ml), y_train_ml)
mnb_preds = mnb_model.predict(tfidf.transform(X_test_ml))
# We also trained a complement Naive Bayes before Balancing the classes, but once we have done that complement classifier is almost same as multinomial naive bayes
# In[46]:
#Complement Naive Bayes
#cnb_model = CNB()
#cnb_model.fit(tfidf.transform(X_train_ml), y_train_ml)
#cnb_preds = cnb_model.predict(tfidf.transform(X_test_ml))
# We trained multiple models using different criteria of Random Forest and different methhods of choosing maximum features and calculate train and test scores of each model. Then based on these scores we finalize the best possible way to train the Random Forest Model.
# In[47]:
#crit = ['gini', 'entropy']
#max_features = ['auto' , 'sqrt' , 'log2']
# In[48]:
#print(' Criterion ' + ' max_features '+' Train Score ' + ' Test Score')
#for i in crit:
# for j in max_features:
# temp_rf = RFC(n_estimators = 100, criterion = i, max_features = j)
# temp_rf.fit(tfidf.transform(X_train_ml), y_train_ml)
# temp_y_pred = temp_rf.predict(tfidf.transform(X_test_ml))
# train_score=temp_rf.score(tfidf.transform(X_train_ml), y_train_ml)
# test_score=temp_rf.score(tfidf.transform(X_test_ml),y_test_ml)
# print(i,j,train_score,test_score)
# In[49]:
#Random Forest
rfc_model= RFC(n_estimators = 100, criterion = 'gini', max_features = 'log2')
rfc_model.fit(tfidf.transform(X_train_ml), y_train_ml)
rfc_preds = rfc_model.predict(tfidf.transform(X_test_ml))
#
#
#
# # LSTM
# In[50]:
from keras.models import Sequential, load_model
from keras.layers import Dense, LSTM, Bidirectional,Embedding, Dropout, Conv1D, MaxPooling1D
from keras.preprocessing.text import Tokenizer
from keras.preprocessing.sequence import pad_sequences
from keras.utils.vis_utils import plot_model
from keras.callbacks import EarlyStopping
# In[51]:
from keras.metrics import Precision, Recall
# In[52]:
from sklearn.model_selection import train_test_split
# We Tokenize the tweets and convert them into set of integers and normalize these and pad them together into sets of same size
# In[53]:
max_words = 5000
max_len = 100
def tokenize_pad_sequences(text):
# Text tokenization
tokenizer = Tokenizer(num_words=max_words, lower=True, split=' ')
tokenizer.fit_on_texts(text)
# Transforms text to a sequence of integers
X = tokenizer.texts_to_sequences(text)
# Pad sequences to the same length
X = pad_sequences(X, padding='post', maxlen=max_len)
# return sequences
return X, tokenizer
print('Before Tokenization & Padding \n', df['final_text'][0],'\n')
X, tokenizer = tokenize_pad_sequences(df['final_text'])
print('After Tokenization & Padding \n', X[0])
# Split the Data into Train, Validation and Test sets
# In[54]:
y = pd.get_dummies(df.sentiment)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42, stratify=y)
X_train, X_valid, y_train, y_valid = train_test_split(X_train, y_train, test_size=0.3, random_state=42, stratify=y_train)
print('Train: ', X_train.shape, y_train.shape)
print('Validation Set:', X_valid.shape, y_valid.shape)
print('Test Set: ', X_test.shape, y_test.shape)
# In[55]:
X_train
# Define a Keras Sequential model and add Embedding Layer, Convolutional Layer, Maxpooling Layer and a Bidirectional LSTM to train the model, we also add a Dropout Layer to prevent overfitting
# In[56]:
vocab_size = 5000
embedding_size = 32
epochs=50
model= Sequential()
model.add(Embedding(vocab_size, embedding_size, input_length=max_len))
model.add(Conv1D(filters=32, kernel_size=3, padding='same', activation='relu'))
model.add(MaxPooling1D(pool_size=2))
model.add(Bidirectional(LSTM(32)))
model.add(Dropout(0.4))
model.add(Dense(3, activation='softmax'))
#plot_model(model, show_shapes = True)
# > plot function is not working with Mac Silicon System so adding the image of network architecture in markdown
# ![image.png](attachment:image.png)
# We compile the model with adam optimizer with a categorical_crossentropy loss function also reporting few metrics
# In[57]:
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy', 'Precision', 'Recall'])
print(model.summary())
# We define an Early Stoppping by measuring validation loss as monitor and fit the model for a maximum of 50 epochs
# In[58]:
es = EarlyStopping(monitor = 'val_loss', patience=5)
batch_size = 64
history = model.fit(X_train, y_train,
validation_data=(X_valid, y_valid),
batch_size=batch_size,
epochs=epochs,
verbose=1,
callbacks = [es])
# Plot graphs of loss and accuracies across the epochs
# In[59]:
plt.figure(figsize=(12, 4))
plt.subplot(1, 2, 1)
plt.plot(history.history['loss'], 'b--', label = 'loss')
plt.plot(history.history['val_loss'], 'r:', label = 'val_loss')
plt.xlabel('Epochs')
plt.legend()
plt.subplot(1, 2, 2)
plt.plot(history.history['accuracy'], 'b--', label = 'acc')
plt.plot(history.history['val_accuracy'], 'r:', label = 'val_acc')
plt.xlabel('Epochs')
plt.legend()
plt.show()
# Get the evaluation metrics of saved model
# In[60]:
lstm_loss, lstm_accuracy, lstm_precision, lstm_recall = model.evaluate(X_test, y_test, verbose=0)
lstm_f1_score = 2 * (lstm_precision * lstm_recall) / (lstm_precision + lstm_recall)
# Print metrics
# In[61]:
print('Accuracy : {:.4f}'.format(lstm_accuracy))
print('Precision : {:.4f}'.format(lstm_precision))
print('Recall : {:.4f}'.format(lstm_recall))
print('F1-Score : {:.4f}'.format(lstm_f1_score))
# Predict the values of test set
# In[62]:
y_pred_lstm = model.predict(X_test)
# In[63]:
from sklearn.metrics import *
# Define Sentiment classes for Confusion matrix and Classification Reports
# In[64]:
sentiment_classes = sorted(['-1', '1', '0'])
# Create Classification Reports for all above Trained models
# In[65]:
cr_lstm = classification_report(np.argmax(np.array(y_test),axis=1),
np.argmax(y_pred_lstm, axis=1),
target_names = sentiment_classes)
# In[66]:
cr_log = classification_report(y_test_ml, log_preds)
cr_knn = classification_report(y_test_ml, knn_preds)
cr_mnb = classification_report(y_test_ml, mnb_preds)
cr_rfc = classification_report(y_test_ml, rfc_preds)
# Create Confusion Matrices for all above trained models
# In[67]:
cm_lstm = confusion_matrix(np.argmax(np.array(y_test),axis=1), np.argmax(y_pred_lstm, axis=1))
# In[68]:
cm_log = confusion_matrix(y_test_ml, log_preds)
cm_knn = confusion_matrix(y_test_ml, knn_preds)
cm_mnb = confusion_matrix(y_test_ml, mnb_preds)
cm_rfc = confusion_matrix(y_test_ml, rfc_preds)
# Plot Heatmaps for Confusion Matrices
# In[69]:
fig=plt.figure(figsize=(18,18))
plt.subplot(3,2,1)
sns.heatmap(cm_log,
annot=True,
fmt=".1f",
cmap='summer',
xticklabels = sentiment_classes,
yticklabels = sentiment_classes)
plt.title('Logistic Regression')
plt.subplot(3,2,2)
sns.heatmap(cm_knn,
annot=True,
fmt=".1f",
cmap='summer',
xticklabels = sentiment_classes,
yticklabels = sentiment_classes)
plt.title('K Nearest Neighbor ')
plt.subplot(3,2,3)
sns.heatmap(cm_mnb,
annot=True,
fmt=".1f",
cmap='summer',
xticklabels = sentiment_classes,
yticklabels = sentiment_classes)
plt.title('Naive Bayes ')
plt.subplot(3,2,4)
sns.heatmap(cm_rfc,
annot=True,
fmt=".1f",
cmap='summer',
xticklabels = sentiment_classes,
yticklabels = sentiment_classes)
plt.title('Random Forest Tree')
plt.subplot(3,2,5)
sns.heatmap(cm_lstm,
annot=True,
fmt=".1f",
cmap='summer',
xticklabels = sentiment_classes,
yticklabels = sentiment_classes)
plt.title('LSTM')
plt.show()
# Print Classification Reports showing Precision, Accuracy, F1-Score and Suppor of all the classes for all trained models
# In[70]:
print("*"*20+'Logistic Regression'+"*"*20)
print(cr_log)
print("*"*20+'K Nearest Neighbor'+"*"*20)
print(cr_knn)
print("*"*20+'Naive Bayes'+"*"*20)
print(cr_mnb)
print("*"*20+'Random Forest'+"*"*20)
print(cr_rfc)
print("*"*20+'LSTM'+"*"*20)
print(cr_lstm)