-
Notifications
You must be signed in to change notification settings - Fork 12
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
关于公式(9)和公式(10) #1
Comments
非常感谢您的关注。 (1)首先对于公式(9),graph的构建有两个必然要素——即节点nodes以及边edges,公式(9)即是计算边的公式。这部分在代码中是隐式的而不是显示的,因为在graph attention的构建中(公式(2)、(3)),用于计算两个节点相似度时已完成了对边edge的计算。此部分在代码中体现在GAT.py中Multihead attention的部分(44行)。 Thank you very much for your attention. (1) First of all, for formula (9), the construction of graph has two necessary elements: nodes and edges. Formula (9) is the formula for calculating edges. This part is implicit rather than displayed in the code, because in the construction of graph attention (formulas (2), (3)), the calculation of the edge has been completed when calculating the similarity of two nodes. This part of the code is reflected in the Multihead attention part of GAT.py (line 44). For formula (10), the relevant part is located at line 251 in model.py img_emb_orig = self.gat_2(self.img_enc(images)), or line 224 in model_bert.py img_emb_orig = self.gat_1(self.img_enc(images_orig)). |
您好: Line 80 in dbb5cf6
这部分内容在您的论文里面没有找到相关定义或解释,可以帮忙解释一下呢? 十分感谢 |
这部分就是一些feed-forward-network的操作 |
非常感谢您开源论文的代码。
请问一下,
(1)在论文中公式(9)和公式(10)的计算,在开源的代码中,model.py或者GAT.py文件中,哪几行是计算这个的呢?
(2)看到您在跑mscoco数据集时,batch_size=300,想问一下,您的实验硬件环境(GPU的个数、型号、单个显存大小)是什么?
(3)在ResNet152的基础上,加入GAT网络,模型的参数引入较大,在mscoco训练的时候,有什么技巧呢?
The text was updated successfully, but these errors were encountered: