-
Notifications
You must be signed in to change notification settings - Fork 1
/
pymongo_crud.py
375 lines (333 loc) · 19.2 KB
/
pymongo_crud.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
import pymongo
import pandas as pd
import numpy as np
import xlwings as xw
import datetime
from pandas.tseries.offsets import BDay
import json
import opstrat as op
import matplotlib.pyplot as plt
import time
import re
#import argparse
client = pymongo.MongoClient("mongodb+srv://<user>:<pass>@cluster0.po32h.mongodb.net/paper_trades?retryWrites=true&w=majority")
db = client.paper_trades
wb = xw.Book('excel_interface.xlsm')
def init():
wb.sheets['Summary'].range('A4').expand().clear_contents()
wb.sheets['Flash'].range('A2').expand().clear_contents()
wb.sheets['Chart'].range('P4').clear_contents()
wb.sheets['Chart'].range('P6').clear_contents()
wb.sheets['Chart'].range('M16').expand().clear()
##############################################################################################################################################################
# Flash upload and visualization
##############################################################################################################################################################
def snapshot_graph():
top_lvl = pd.DataFrame(list(db.snapshots.find({}, {'date': 1, 'flash_amt': 1, '_id':0})))
details = list(db.snapshots.find({}, {'date': 1, 'flash_details': 1, '_id':0}))
edata = pd.json_normalize(details, record_path =['flash_details'], meta=['date'])
cday = wb.sheets['Chart'].range('P4').value
if cday == None:
today = datetime.datetime.now().replace(minute=0, hour=0, second=0, microsecond=0)
if BDay().is_on_offset(today):
wb.sheets['Chart'].range('P4').value = today
else:
today = today - BDay(1)
wb.sheets['Chart'].range('P4').value = today
cday = today
#Daily flash table
#cday = datetime.datetime.strptime(sdate, '%m/%d/%Y')
nday = cday + datetime.timedelta(days=1)
table_res = edata.loc[(edata['date']>= cday) & (edata['date']< nday)].drop(['date'], axis=1)
wb.sheets['Chart'].range('M16:S28').clear_contents()
wb.sheets['Chart'].range('M16').options(index = False, header = False).value = table_res
wb.sheets['Chart'].range('M16').expand().api.Borders.Weight = 4
#if there is existing ticker selected, then don't recreate the dropdown
#if date has changed, clear out dropdown value so it will load the appropriate tickers for that date
if wb.sheets['Chart'].range('P6').value == None:
open_tickers = list(table_res['ticker'])
dropdown_val = ",".join(open_tickers)
wb.sheets['Chart'].range('P6').api.Validation.Add(Type=3, Formula1=dropdown_val)
wb.sheets['Chart'].range('P6').value = open_tickers[0]
wb.sheets['Chart']['P6'].api.HorizontalAlignment = xw.constants.HAlign.xlHAlignCenter
# Total flash amt everyday
top_fig = plt.figure()
plt.plot(top_lvl["date"], top_lvl["flash_amt"])
plt.xlabel('Date')
plt.ylabel('PnL Flash ($)')
plt.title("PnL Flash Over Time")
plt.xticks(rotation=90)
wb.sheets['Chart'].pictures.add(top_fig, name = "pnl", update=True, anchor=wb.sheets['Chart'].range('B3'))
#Gamma vs Theta chart
dropdown_value = wb.sheets['Chart'].range('P6').value
cdata = edata.loc[edata['ticker'] == dropdown_value, ["date", "gamma_delivery", "theta_flash"]]
greek_fig= plt.figure()
plt.plot(cdata["date"], cdata["gamma_delivery"], label = "Gamma")
plt.plot(cdata["date"], cdata["theta_flash"], label = "Theta")
plt.xlabel("Date")
plt.ylabel("Flash ($)")
plt.title("{} Gamma vs Theta".format(dropdown_value))
plt.xticks(rotation=90)
plt.legend()
wb.sheets['Chart'].pictures.add(greek_fig, name = "greeks", update = True, anchor=wb.sheets['Chart'].range('B30'))
#Flash breakdown chart
break_fig = plt.figure()
plt.bar(table_res['ticker'], table_res['total_flash'])
plt.xlabel("Ticker")
plt.ylabel("FLash ($)")
plt.title("{} Flash Breakdown by Ticker".format(cday.strftime("%m/%d")))
wb.sheets['Chart'].pictures.add(break_fig, name = "breakdown", update = True, anchor=wb.sheets['Chart'].range('M30'))
def insert_snapshot():
last_row = wb.sheets['Flash'].range('A' + str(wb.sheets['Flash'].cells.last_cell.row)).end('up').row
df= wb.sheets['Flash'].range('A1:G%s' % last_row).options(pd.DataFrame).value.reset_index()
jdata = json.dumps([row[["ticker", "total_flash", "delta_live", "delta_flash", "gamma_delivery", "vega_flash", "theta_flash"]].dropna().to_dict() for index,row in df.iterrows()])
data = json.loads(jdata)
data = {'date': datetime.datetime.utcnow(), 'flash_amt': df['total_flash'].sum(), 'flash_details': data}
db.snapshots.insert_one(data)
##############################################################################################################################################################
# DML operations
##############################################################################################################################################################
def insert_transactions():
#must include header
df = wb.app.selection.options(pd.DataFrame, index = 0).value
df['expiry'] = df['expiry'].fillna('')
df['expiry'] = df['expiry'].astype(str)
jdata = json.dumps([row.dropna().to_dict() for index,row in df.iterrows()])
data = json.loads(jdata)
for i in data:
i['start_date'] = datetime.datetime.utcnow()
if i['expiry'] != "":
try:
i['expiry'] = datetime.datetime.strptime(i['expiry'], '%Y-%m-%d')
except:
pass
else:
i.pop('expiry', None)
c = db.transactions.insert_many(data)
wb.app.selection.clear_contents()
wb.sheets['Insert_Update'].range('A1').value = ["ticker", "position", "start_price", "c/p", "strike", "expiry"]
fetch_open()
def update_transaction(start_date, ticker, new_values, cp, strike, expiry, unset = False):
try:
start = datetime.datetime.strptime(start_date, '%Y-%m-%d')
except:
start = start_date
end = start + datetime.timedelta(days=1)
if cp == None:
query = {"ticker": ticker, "start_date": {'$lte': end, '$gte': start - datetime.timedelta(minutes= 1)}}
else:
try:
estart = datetime.datetime.strptime(expiry, '%Y-%m-%d')
except:
estart = expiry
eend = estart + datetime.timedelta(days=1)
query = {"ticker": ticker, "start_date": {'$lte': end, '$gte': start - datetime.timedelta(minutes= 1)}, "c/p": cp, "strike": strike, "expiry": {'$lte': eend, '$gte': estart}}
if unset == False:
c = db.transactions.update_one(query, [{"$set": new_values}])
else:
c = db.transactions.update_one(query, {"$unset": new_values})
assert(c.matched_count == 1)
def close_transaction():
#start_date of form 1-2 digit month/2 digit day/4 digit year
transaction = wb.app.selection.value
start_date, ticker, position, start_price, cp , strike, expiry, close_price, close_position = transaction[0], transaction[1], transaction[2], transaction[3], transaction[4], transaction[5], transaction[6], transaction[7], transaction[8]
close_date = datetime.datetime.utcnow()
# For options, if exercise close price = price of underlying
# else close_price = price of option
if expiry != None and close_date >= expiry:
if cp == "c":
pnl = np.round(max(close_price - strike, 0) - start_price, 2)*close_position
else:
pnl = np.round(max(strike - close_price, 0) - start_price, 2)*close_position
else:
pnl = np.round((close_price - start_price),2)*close_position
if abs(close_position) == abs(position):
try:
start = datetime.datetime.strptime(start_date, '%m/%d/%Y')
except:
start = start_date
end = start + datetime.timedelta(days=1)
#c = db.transactions.delete_one({"start_date": {'$lte': end, '$gte': start}, "ticker": ticker, "position": int(position)})
c = db.transactions.delete_one({"ticker": ticker, "position": int(position)})
assert(c.deleted_count == 1)
if cp == None:
db.past_trans.insert_one({"start_date": start_date, "ticker": ticker, "position": position, "start_price": start_price,"close_date": close_date,
"close_price": close_price, "pnl": pnl})
else:
db.past_trans.insert_one({"start_date": start_date, "ticker": ticker, "position": position, "start_price": start_price, "c/p": cp, "strike": strike, "expiry": expiry, "close_date": close_date,
"close_price": close_price, "pnl": pnl})
else:
#insert into past_trans
#update old one
db.past_trans.insert_one({"start_date": start_date, "ticker": ticker, "position": close_position, "start_price": start_price,"close_date": close_date, "close_price": close_price, "pnl": pnl})
# new = {"close_date": close_date, "close_price": close_price, "pnl": {"$round": [{"$multiply": [close_position, {"$subtract": [close_price, "$start_price"]}]}, 2]}, "position": {"$subtract": ["$position", close_position]}}
new = {"position": {"$subtract": ["$position", close_position]}}
update_transaction(start_date, ticker, new, cp, strike, expiry)
fetch_open()
def correct_transaction():
transaction = wb.app.selection.options(np.array, ndim=2).value
t = np.where(pd.notnull(transaction[1]), transaction[1], None)
ticker, start_date, cp, strike, expiry = t[0], t[1], t[2], t[3], t[4]
unset_idx = np.argwhere(pd.isnull(transaction[1][5:])).flatten()
if len(unset_idx) != 0:
unset_idx = unset_idx + 5
unset_new = dict(zip(transaction[0][unset_idx], transaction[1][unset_idx]))
update_transaction(start_date, ticker, unset_new, cp, strike, expiry, True)
else:
set_idx = np.setdiff1d(np.arange(len(transaction[0])), np.append(unset_idx, [0,1,2,3,4]))
set_new = dict(zip(transaction[0][set_idx], transaction[1][set_idx]))
#print(start_date)
update_transaction(start_date, ticker, set_new, cp, strike, expiry)
wb.app.selection.clear_contents()
wb.sheets['Insert_Update'].range('H1').value = ["ticker", "start_date", "c/p", "strike", "expiry"]
fetch_open()
fetch_past()
def delete_transactions(timeframe=1):
transaction = wb.app.selection.options(np.array, ndim=2).value
query = dict(zip(transaction[0], transaction[1]))
if 'start_date' in transaction[0]:
idx = np.where(transaction[0] == 'start_date')[0][0]
try:
start = datetime.combine(transaction[1][idx], datetime.min.time())
except:
start = transaction[1][idx]
if timeframe != "inf":
end = start + datetime.timedelta(days=timeframe)
query['start_date'] = {'$lte': end, '$gte': start}
else:
query['start_date'] = {'$gte': start}
#print(query)
c = db.transactions.delete_many(query)
print(c.deleted_count)
fetch_open()
wb.sheets['Delete'].clear_contents()
##############################################################################################################################################################
# Flash and Risks
##############################################################################################################################################################
def calc_imp_vol(row):
prev_day = (datetime.datetime.today() - BDay(1)).strftime("%Y%m%d")
if row["c/p"] == 'c' or row["c/p"] == 'p':
if row["type"] != "curncy":
#override_field: opt_valuation_dt, format YYYYMMDD
return """=BDP("{} {} {}{} {}", "ivol_tm", "opt_valuation_dt", "{}")""".format(row['ticker'], row['expiry'].strftime("%m/%d/%y"), row["c/p"], row['strike'],row['type'], prev_day)
else:
#override field: reference_date
return """=BDP("{} {}", "sp_vol_surf_mid", "reference_date", "{}")""".format(row["ticker"], row["type"], prev_day)
else:
return np.nan
def calc_vol_chg(row):
prev_day = (datetime.datetime.today() - BDay(1)).strftime("%Y%m%d")
if row['c/p'] == 'c' or row['c/p'] == 'p':
if row['type'] != 'curncy':
return """=BDP("{} {} {}{} {}", "opt_imp_vol_pct_chng", "opt_valuation_dt", "{}")""".format(row['ticker'], row['expiry'].strftime("%m/%d/%y"), row['c/p'], row['strike'], row['type'], prev_day)
else:
return """=BDP("{}v3m {}", "chg_pct_1d")""".format(row["ticker"], row["type"])
else:
return np.nan
def greeks(row):
#make sure date is changed
prev_day = (datetime.datetime.today() - BDay(1)).strftime("%Y%m%d")
if row['c/p'] == 'c' or row['c/p'] == 'p':
if row['type'] != 'curncy':
delta = """=BDP("{} {} {}{} {}", "delta", "opt_valuation_dt", "{}")""".format(row['ticker'], row['expiry'].strftime("%m/%d/%y"), row['c/p'], row['strike'], row['type'], prev_day)
gamma = """=BDP("{} {} {}{} {}", "gamma", "opt_valuation_dt", "{}")""".format(row['ticker'], row['expiry'].strftime("%m/%d/%y"), row['c/p'], row['strike'], row['type'], prev_day)
vega = """=BDP("{} {} {}{} {}", "vega", "opt_valuation_dt", "{}")""".format(row['ticker'], row['expiry'].strftime("%m/%d/%y"), row['c/p'], row['strike'], row['type'], prev_day)
theta = """=BDP("{} {} {}{} {}", "opt_theta", "opt_valuation_dt", "{}")""".format(row['ticker'], row['expiry'].strftime("%m/%d/%y"), row['c/p'], row['strike'], row['type'], prev_day)
return [delta, gamma, vega, theta]
else:
#make_sure rf rate is yesterday's
rf = wb.sheets['Summary'].range('B1').value
#time remain also 1 day off
t = (row['expiry'] - datetime.datetime.now()).days + 1
st = float(row['current_price']) - float(row['price_change'])
#assume notional = 100
bsm = op.black_scholes(K=row['strike'], St=st, r=rf, t=t, v=row['implied_vol'], type=row['c/p'])
greeks = bsm['greeks']
# vega*100 so it is in terms of percent
return [greeks['delta'], greeks['gamma']/100, greeks['vega'], greeks['theta']]
else:
return [1,0,0,0]
def calc_flash():
last_row = wb.sheets['Summary'].range('A' + str(wb.sheets['Summary'].cells.last_cell.row)).end('up').row
df= wb.sheets['Summary'].range('A3:N%s' % last_row).options(pd.DataFrame).value.reset_index()
df['gamma_delivery'] = np.where(df['gamma']==0, 0, df['gamma']*df['price_change']*df['position'])
df['delta_live'] = df['delta']*df['position'] + df['gamma_delivery']
df['delta_flash'] = df['delta_live']*df['price_change']
df['vega_flash'] = np.where(df['vega']==0, 0, df['vega']* df['vol_pct_chg']*df['position'])
df['theta_flash'] = np.where(df['theta']==0, 0, df['theta']*df['position'])
df['total_flash'] = np.where(df['theta']==0, df['delta_flash'], df['delta_flash'] + df['vega_flash'] + df['theta_flash'])
final = df.groupby(["ticker"]).agg({'delta_live': 'sum', 'gamma_delivery': 'sum', 'delta_flash': 'sum', 'vega_flash': 'sum', 'theta_flash': 'sum', 'total_flash': 'sum'})
final.reset_index(inplace=True)
wb.sheets['Flash'].range('A2:G%s' % last_row).clear_contents()
wb.sheets['Flash'].range('A2').options(index = False, header=False).value = final
def fetch_open():
data = list(db.transactions.find())
df = pd.DataFrame(data)
df = df.reindex(columns= ['_id', 'start_date', 'ticker', 'position', 'start_price', 'c/p', 'strike', 'expiry',
'close_price','close_position']).drop(['_id'], axis = 1)
#print(df)
last_row = wb.sheets['Open_Transactions'].range('A' + str(wb.sheets['Open_Transactions'].cells.last_cell.row)).end('up').row
wb.sheets['Open_Transactions'].range('A1:I%s' % last_row).clear_contents()
wb.sheets['Open_Transactions'].range('A1').options(index=False).value = df
def fetch_past():
data = list(db.past_trans.find())
df = pd.DataFrame(data)
df = df.reindex(columns= ['_id', 'start_date', 'ticker', 'position', 'start_price', 'c/p', 'strike', 'expiry',
'close_date', 'close_price','pnl']).drop(['_id'], axis = 1)
#print(df)
last_row = wb.sheets['Past_Transactions'].range('A' + str(wb.sheets['Past_Transactions'].cells.last_cell.row)).end('up').row
wb.sheets['Past_Transactions'].range('A1:J%s' % last_row).clear_contents()
wb.sheets['Past_Transactions'].range('A1').options(index=False).value = df
def identify_type(row):
if bool(re.findall('[^0-9]{6}', row['ticker'])):
return 'curncy'
elif bool(re.findall('^[^0-9]+$', row['ticker'])):
return 'equity'
elif bool(re.findall('^(ES|RTY|NQ).+$', row['ticker'])):
return 'index'
else:
return 'comdty'
def retrieve_risk():
data = list(db.transactions.find())
df = pd.DataFrame(data)
df = df.groupby(["ticker", "c/p", "strike", "expiry"], dropna= False).agg({'position': 'sum'})
df.reset_index(inplace=True)
df['type'] = df.apply(identify_type, axis=1)
df["current_price"] = df[["ticker", "type"]].apply(lambda x: """=BDP("{} {}", "px_last")""".format(x["ticker"], x["type"]), axis = 1)
df["price_change"] = df[["ticker", "type"]].apply(lambda x: """=BDP("{} {}", "chg_net_1d")""".format(x["ticker"], x["type"]), axis = 1)
#print(df['expiry'])
df["implied_vol"]= df.apply(calc_imp_vol, axis=1)
df["vol_pct_chg"]= df.apply(calc_vol_chg, axis=1)
wb.sheets['Summary'].range('A4').options(index = False, header= False).value = df
last_row = wb.sheets['Summary'].range('A' + str(wb.sheets['Summary'].cells.last_cell.row)).end('up').row
val_df= wb.sheets['Summary'].range('A3:J%s' % last_row).options(pd.DataFrame).value.reset_index()
time.sleep(10)
val_df[["delta", "gamma", "vega", "theta"]] = val_df.apply(greeks, axis=1, result_type="expand")
#val_df[["current_price", "price_change", "implied_vol", "vol_pct_chg"]] = df[["current_price", "price_change", "implied_vol", "vol_pct_chg"]]
wb.sheets['Summary'].range('A4:N%s' % last_row).clear_contents()
wb.sheets['Summary'].range('A4').options(index = False, header = False).value = val_df
return val_df
# if __name__ == "__main__":
# parser = argparse.ArgumentParser(description='Run MongoDB CRUD operations.')
# subparsers = parser.add_subparsers()
# parser_summary = subparsers.add_parser('summary', help = "Display net shares and net positions.")
# parser_summary.set_defaults(func = calculate_all_net_position)
# """
# example call:
# >python pymongo_crud.py summary "{\"EURUSD\": 1.23, \"XAGUSD\": 28.30}"
# {'XAGUSD': [100, 269.0], 'EURUSD': [50, 0.5]}
# """
# parser_insert = subparsers.add_parser('insert', help = "Insert a transaction into Mongo Atlas.")
# parser_insert.set_defaults(func = insert_transactions)
# parser_close = subparsers.add_parser('close', help = "Close an open transaction.")
# parser_close.set_defaults(func = close_transaction)
# parser_correct = subparsers.add_parser('correct', help = "Correct a transaction.")
# parser_correct.set_defaults(func = correct_transaction)
# parser_show = subparsers.add_parser('show_all', help = "Display all transactions.")
# parser_show.set_defaults(func = fetch_all)
# parser_open_ticker = subparsers.add_parser('open_tickers', help = "Display the unique tickers of all open transactions.")
# parser_open_ticker.set_defaults(func = get_open_tickers)
# args = parser.parse_args()
# command_args = vars(args).copy()
# del command_args['func']
# args.func(**command_args)