-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmlgmm_hy.py
63 lines (62 loc) · 2.35 KB
/
mlgmm_hy.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
#!/usr/bin/env python2
# -*- coding: utf-8 -*-
"""
Created on Thu Jun 8 14:43:00 2017
@author: yangh
"""
import numpy as np
from sklearn import mixture
def data2gmm(N_components, tempmatrix, Ngmmlist):
np.random.seed(np.int(0))
gmm = mixture.GaussianMixture(n_components=N_components, covariance_type='full', init_params='random', random_state=np.int(0), max_iter=1000,verbose=0);
gmm.fit(tempmatrix)
bestgmm = gmm
# Ngmmlist = 10000;
gmmlist = [gmm]*Ngmmlist
Ngmmlist = range(Ngmmlist)
for i in np.array(Ngmmlist):
np.random.seed(np.int(i+1))
#np.int(i+1+j*1e6)
gmmlist[i] = mixture.GaussianMixture(n_components=N_components, covariance_type='full', init_params='random', random_state=np.int(i+1), max_iter=1000,verbose=0);
gmmlist[i].fit(tempmatrix);
#print gmm.bic(tempmatrix)
if gmmlist[i].bic(tempmatrix) < bestgmm.bic(tempmatrix):
bestgmm = gmmlist[i];
return bestgmm, gmmlist
####
import itertools
from multiprocessing import Pool
def data2gmm_s(a,b):
index = a
tempmatrix, N_components = b
gmm = mixture.GaussianMixture(n_components=N_components, covariance_type='full', init_params='random', random_state=np.int(index+1), max_iter=1000,verbose=0);
gmm.fit(tempmatrix)
return gmm
def data2gmmstar(a_b):
return data2gmm_s(*a_b)
def data2gmmp(N_components, tempmatrix, Ngmmlist,verboseF=0):
#
# parallized version
#
np.random.seed(np.int(0))
gmm = mixture.GaussianMixture(n_components=N_components, covariance_type='full', init_params='random', random_state=np.int(0), max_iter=1000, verbose=verboseF);
gmm.fit(tempmatrix)
bestgmm = gmm
# Ngmmlist = 10000
gmmlist = [gmm]*Ngmmlist
Ngmmlist = range(Ngmmlist)
#
N_clist = Ngmmlist
others = [tempmatrix, N_components]
Ncpu = 55
pool = Pool(Ncpu)
result_multipleprocessing = pool.map(data2gmmstar, itertools.izip(N_clist, itertools.repeat(others, len(N_clist))))
pool.close()
pool.join()
# extract the set of outcomes
for i in range(len(result_multipleprocessing)):
gmmlist[i] = result_multipleprocessing[i]
gmmbiclist = [gmmlist[i].bic(tempmatrix) for i in range(0, len(result_multipleprocessing))]
index = np.where(gmmbiclist == np.min(gmmbiclist))
bestgmm = gmmlist[index[0][0]]
return bestgmm, gmmlist