-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathtrain.py
514 lines (407 loc) · 27 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
import os
import argparse
import pandas as pd
from PIL import Image
from lib2to3.pytree import convert
from torch import nn
from torch import optim
import torch.utils.data
import torch.nn.functional as F
import torch.backends.cudnn as cudnn
from torch.utils.data import DataLoader
from transformers import BertTokenizer, GPT2Tokenizer
from utils import *
from dataloaders.dataloaderClassification import *
from dataloaders.dataloaderGPT2Classification import *
from models.VisualBertClassification import VisualBertClassification
from models.VisualBertResMLPClassification import VisualBertResMLPClassification
# from models.ViReVisualBertClassification import ViReVisualBertClassification
from models.EFGPT2Classification import EFVLEGPT2RS18Classification, EFVLEGPT2SwinClassification, EFVLEGPT2ViTClassification
# from models.EFGPT2GCVITClassification import EFGPT2GCVITClassification
# from models.EFViLGPT2Classification import ViLGPT2VQA
# from models.LFGPT2Classification import GPT2RS18Classification, GPT2ViTClassification, GPT2SwinClassification, BioGPT2RS18Classification
# from models.ViReGPT2Classification import EFGPT2RS18GRClassification, EFVLEGPT2SwinGRClassification
import warnings
warnings.simplefilter(action='ignore', category=FutureWarning)
class config_emb:
visual_embedding_dim = 2048
vocab_size = 30522
type_vocab_size = 2
pad_token_id = 1
hidden_size = 768
max_position_embeddings = 512
layer_norm_eps = 1e-12
hidden_dropout_prob = 0.1
special_visual_initialize = True
'''
Seed randoms
'''
def seed_everything(seed=27):
'''
Set random seed for reproducible experiments
Inputs: seed number
'''
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
os.environ['PYTHONHASHSEED'] = str(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
def train(args, train_dataloader, model, criterion, optimizer, epoch, tokenizer, device):
model.train()
total_loss = 0.0
label_true = None
label_pred = None
label_score = None
for i, (_, v_f, q, labels) in enumerate(train_dataloader,0):
# print('train')
# prepare questions
questions = []
for question in q: questions.append(question)
if args.model_ver == 'vb' or args.model_ver == 'vbrm':
inputs = tokenizer(questions, return_tensors="pt", padding="max_length", max_length=args.question_len)
elif args.model_ver == 'efvlegpt2rs18' or args.model_ver == "efvlegpt2Swin" or args.model_ver == 'efvlegpt2ViT':
# inputs = tokenizer(questions, padding=True, truncation=True, return_tensors="pt")
inputs = tokenizer(questions, padding="max_length",max_length= args.question_len, return_tensors="pt")
# Visual features
if args.model_ver == "efvlegpt2Swin" or args.model_ver == 'efvlegpt2ViT':
# or args.model_ver == 'gpt2ViT' or args.model_ver == "gpt2Swin" \
# or args.model_ver == "efvlegpt2Swingr" \
visual_features = v_f
visual_features['pixel_values'] = torch.squeeze(visual_features['pixel_values'],1)
else:
visual_features = v_f.to(device)
# labels
labels = labels.to(device)
# model forward pass
outputs = model(inputs, visual_features)
# loss
loss = criterion(outputs, labels)
# zero the parameter gradients
optimizer.zero_grad()
loss.backward()
optimizer.step()
# print statistics
total_loss += loss.item()
scores, predicted = torch.max(F.softmax(outputs, dim=1).data, 1)
label_true = labels.data.cpu() if label_true == None else torch.cat((label_true, labels.data.cpu()), 0)
label_pred = predicted.data.cpu() if label_pred == None else torch.cat((label_pred, predicted.data.cpu()), 0)
label_score = scores.data.cpu() if label_score == None else torch.cat((label_score, scores.data.cpu()), 0)
# loss and acc
acc, c_acc = calc_acc(label_true, label_pred), calc_classwise_acc(label_true, label_pred)
precision, recall, fscore = calc_precision_recall_fscore(label_true, label_pred)
print('Train: epoch: %d loss: %.6f | Acc: %.6f | Precision: %.6f | Recall: %.6f | FScore: %.6f' %(epoch, total_loss, acc, precision, recall, fscore))
return acc
def validate(args, val_loader, model, criterion, epoch, tokenizer, device, save_output = False):
model.eval()
total_loss = 0.0
label_true = None
label_pred = None
label_score = None
file_names = list()
criterion = nn.CrossEntropyLoss()
with torch.no_grad():
for i, (file_name, v_f, q, labels) in enumerate(val_loader,0):
# prepare questions
questions = []
for question in q: questions.append(question)
if args.model_ver == 'vb' or args.model_ver == 'vbrm':
# or args.model_ver == 'vrvb'
inputs = tokenizer(questions, return_tensors="pt", padding="max_length", max_length=args.question_len)
elif args.model_ver == 'efvlegpt2rs18' or args.model_ver == "efvlegpt2Swin" or args.model_ver == 'efvlegpt2ViT':
# inputs = tokenizer(questions, padding=True, truncation=True, return_tensors="pt",)
inputs = tokenizer(questions, padding="max_length",max_length=args.question_len, return_tensors="pt")
# GPU / CPU
# Visual features
if args.model_ver == "efvlegpt2Swin" or args.model_ver == 'efvlegpt2ViT':
visual_features = v_f
visual_features['pixel_values'] = torch.squeeze(visual_features['pixel_values'],1)
else:
visual_features = v_f.to(device)
# label
labels = labels.to(device)
# model forward pass
outputs = model(inputs, visual_features)
# loss
loss = criterion(outputs,labels)
total_loss += loss.item()
scores, predicted = torch.max(F.softmax(outputs, dim=1).data, 1)
label_true = labels.data.cpu() if label_true == None else torch.cat((label_true, labels.data.cpu()), 0)
label_pred = predicted.data.cpu() if label_pred == None else torch.cat((label_pred, predicted.data.cpu()), 0)
label_score = scores.data.cpu() if label_score == None else torch.cat((label_score, scores.data.cpu()), 0)
for f in file_name: file_names.append(f)
acc = calc_acc(label_true, label_pred)
c_acc = 0.0
# c_acc = calc_classwise_acc(label_true, label_pred)
precision, recall, fscore = calc_precision_recall_fscore(label_true, label_pred)
print('Test: epoch: %d loss: %.6f | Acc: %.6f | Precision: %.6f | Recall: %.6f | FScore: %.6f' %(epoch, total_loss, acc, precision, recall, fscore))
if save_output:
'''
Saving predictions
'''
if os.path.exists(args.checkpoint_dir + 'text_files') == False:
os.mkdir(args.checkpoint_dir + 'text_files' )
file1 = open(args.checkpoint_dir + 'text_files/labels.txt', 'w')
file1.write(str(label_true))
file1.close()
file1 = open(args.checkpoint_dir + 'text_files/predictions.txt', 'w')
file1.write(str(label_pred))
file1.close()
if args.dataset_type == 'med_vqa':
if args.dataset_cat == 'cat1':
convert_arr = ['cta - ct angiography', 'no', 'us - ultrasound', 'xr - plain film', 'noncontrast', 'yes', 't2', 'ct w/contrast (iv)', 'mr - flair', 'mammograph', 'ct with iv contrast',
'gi and iv', 't1', 'mr - t2 weighted', 'mr - t1w w/gadolinium', 'contrast', 'iv', 'an - angiogram', 'mra - mr angiography/venography', 'nm - nuclear medicine', 'mr - dwi diffusion weighted',
'ct - gi & iv contrast', 'ct noncontrast', 'mr - other pulse seq.', 'ct with gi and iv contrast', 'flair', 'mr - t1w w/gd (fat suppressed)', 'ugi - upper gi', 'mr - adc map (app diff coeff)',
'bas - barium swallow', 'pet - positron emission', 'mr - pdw proton density', 'mr - t1w - noncontrast', 'be - barium enema', 'us-d - doppler ultrasound', 'mr - stir', 'mr - flair w/gd',
'ct with gi contrast', 'venogram', 'mr t2* gradient,gre,mpgr,swan,swi', 'mr - fiesta', 'ct - myelogram', 'gi', 'sbft - small bowel', 'pet-ct fusion']
elif args.dataset_cat == 'cat2':
convert_arr = ['axial', 'longitudinal', 'coronal', 'lateral', 'ap', 'sagittal', 'mammo - mlo', 'pa', 'mammo - cc', 'transverse', 'mammo - mag cc', 'frontal', 'oblique', '3d reconstruction', 'decubitus', 'mammo - xcc']
else:
convert_arr = ['lung, mediastinum, pleura', 'skull and contents', 'genitourinary', 'spine and contents', 'musculoskeletal', 'heart and great vessels', 'vascular and lymphatic', 'gastrointestinal', 'face, sinuses, and neck', 'breast']
elif args.dataset_type == 'c80':
convert_arr = ['no', 'calot triangle dissection', 'yes', '1', '2', 'gallbladder dissection',
'clipping cutting', 'gallbladder retraction', '0', 'cleaning coagulation',
'gallbladder packaging', 'preparation', '3']
elif args.dataset_type == 'm18':
convert_arr = ['kidney', 'Idle', 'Grasping', 'Retraction', 'Tissue_Manipulation',
'Tool_Manipulation', 'Cutting', 'Cauterization', 'Suction',
'Looping', 'Suturing', 'Clipping', 'Staple', 'Ultrasound_Sensing',
'left-top', 'right-top', 'left-bottom', 'right-bottom']
df = pd.DataFrame(columns=["Img", "Ground Truth", "Prediction"])
for i in range(len(label_true)):
df = df.append({'Img': file_names[i], 'Ground Truth': convert_arr[label_true[i]], 'Prediction': convert_arr[label_pred[i]]}, ignore_index=True)
df.to_csv(args.checkpoint_dir + args.checkpoint_dir.split('/')[1] + '_' + args.checkpoint_dir.split('/')[2] + '_eval.csv')
return (acc, c_acc, precision, recall, fscore)
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='VisualQuestionAnswerClassification')
# VB Model parameters
parser.add_argument('--emb_dim', type=int, default=300, help='dimension of word embeddings.')
parser.add_argument('--n_heads', type=int, default=8, help='Multi-head attention.')
parser.add_argument('--dropout', type=float, default=0.1, help='dropout')
parser.add_argument('--encoder_layers', type=int, default=6, help='the number of layers of encoder in Transformer.')
# Training parameters
parser.add_argument('--epochs', type=int, default=80, help='number of epochs to train for (if early stopping is not triggered).') #80, 26
parser.add_argument('--batch_size', type=int, default=64, help='batch_size')
parser.add_argument('--workers', type=int, default=1, help='for data-loading; right now, only 1 works with h5pys.')
parser.add_argument('--print_freq', type=int, default=100, help='print training/validation stats every __ batches.')
# existing checkpoint
parser.add_argument('--checkpoint', default=None, help='path to checkpoint, None if none.')
parser.add_argument('--lr', type=float, default=0.00001, help='0.000005, 0.00001, 0.000005')
parser.add_argument('--checkpoint_dir', default= 'checkpoints/clf_biogpt2rs18/c80/', help='med_vqa_c$version$/m18/c80/m18_vid$temporal_size$/c80_vid$temporal_size$') #clf_v1_2_1x1/med_vqa_c3
parser.add_argument('--dataset_type', default= None, help='med_vqa/m18/c80/m18_vid/c80_vid')
parser.add_argument('--dataset_cat', default= 'cat1', help='cat1/cat2/cat3')
parser.add_argument('--tokenizer_ver', default= 'gpt2v1', help='btv2/btv3/gpt2v1')
parser.add_argument('--question_len', default= 25, help='25')
parser.add_argument('--model_ver', default= None, help='vb/vbrm/efvlegpt2rs18/efvlegpt2Swin/"') #vrvb/gpt2rs18/gpt2ViT/gpt2Swin/biogpt2rs18/vilgpt2vqa/efgpt2rs18gr/efvlegpt2Swingr
parser.add_argument('--model_subver', default= 'v0', help='V0,v1/v2/v3/v4')
parser.add_argument('--vis_pos_emb', default= None, help='None, zeroes, pos')
parser.add_argument('--patch_size', default= 5, help='1/2/3/4/5')
parser.add_argument('--num_class', default= 2, help='25')
# parser.add_argument('--temporal_size', default= 1, help='1/2/3/4/5')
parser.add_argument('--validate', default=False, help='When only validation required False/True')
args = parser.parse_args()
'''
EFVLEGPT2RS18Classification:
v0: visual embedding : Default patch1 + embedding form VB + GPT2 decoder
v1: visual embedding : Default patch1 + from nn.linear + GPT2 decoder
v2: visual embedding : visual patches + embedding form VB + GPT2 decoder
v3: visual embedding : visual patches + from nn.linear + GPT2 decoder
EFVLEGPT2SwinClassification:
v0: visual embedding : Default patch1 + embedding form VB + GPT2 decoder
v1: visual embedding : Default patch1 + GPT2 decoder
'''
print(args.model_ver, args.model_subver, args.vis_pos_emb, args.dataset_type, args.dataset_cat, args.lr, args.checkpoint_dir)
# load checkpoint, these parameters can't be modified
final_args = {"emb_dim": args.emb_dim, "n_heads": args.n_heads, "dropout": args.dropout, "encoder_layers": args.encoder_layers}
seed_everything()
# GPU or CPU
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # sets device for model and PyTorch tensors
cudnn.benchmark = True # set to true only if inputs to model are fixed size; otherwise lot of computational overhead
print('device =', device)
# best model initialize
start_epoch = 1
best_epoch = [0]
best_results = [0.0]
epochs_since_improvement = 0
# dataset
if args.dataset_type == 'med_vqa':
'''
Train and test dataloader for MED_VQA
'''
# tokenizer
tokenizer = None
if args.tokenizer_ver == 'btv2': tokenizer = BertTokenizer.from_pretrained('./dataset/bertvocab/v2/bert-medvqa/')
elif args.tokenizer_ver == 'btv3': tokenizer = BertTokenizer.from_pretrained('./dataset/bertvocab/v3/bert-medvqa/', do_lower_case=True)
elif args.tokenizer_ver == 'gpt2v1':
tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
tokenizer.pad_token = tokenizer.eos_token
# data location
train_folder = 'dataset/VQA-Med/ImageClef-2019-VQA-Med-Training/'
val_folder = 'dataset/VQA-Med/ImageClef-2019-VQA-Med-Validation/'
train_img_folder = 'train_images/'
val_img_folder = 'val_images/'
# dataloader
if args.model_ver == 'vb' or args.model_ver == 'vbrm':
# or args.model_ver == 'vrvb' \
train_dataset = MedVQAVBClassification(train_folder, train_img_folder, args.dataset_cat, patch_size = args.patch_size, validation=False)
train_dataloader = DataLoader(dataset=train_dataset, batch_size= args.batch_size, shuffle=True)
val_dataset = MedVQAVBClassification(val_folder, val_img_folder, args.dataset_cat, patch_size = args.patch_size, validation=True)
val_dataloader = DataLoader(dataset=val_dataset, batch_size= args.batch_size, shuffle=False)
elif args.model_ver == 'efvlegpt2rs18' or args.model_ver == "efvlegpt2Swin" or args.model_ver == 'efvlegpt2ViT':
train_dataset = MedVQAGPTClassification(train_folder, train_img_folder, args.dataset_cat, model_ver=args.model_ver, validation=False)
train_dataloader = DataLoader(dataset=train_dataset, batch_size= args.batch_size, shuffle=True, num_workers=8)
val_dataset = MedVQAGPTClassification(val_folder, val_img_folder, args.dataset_cat, model_ver=args.model_ver, validation=True)
val_dataloader = DataLoader(dataset=val_dataset, batch_size= args.batch_size, shuffle=False, num_workers=8)
# num_classes
if args.dataset_cat == 'cat1': args.num_class = 45
elif args.dataset_cat == 'cat2': args.num_class = 16
elif args.dataset_cat == 'cat3': args.num_class = 10
elif args.dataset_type == 'm18':
'''
Train and test dataloader for EndoVis18
'''
# tokenizer
tokenizer = None
if args.tokenizer_ver == 'btv2': tokenizer = BertTokenizer.from_pretrained('./dataset/bertvocab/v2/bert-EndoVis-18-VQA/')
elif args.tokenizer_ver == 'btv3': tokenizer = BertTokenizer.from_pretrained('./dataset/bertvocab/v3/bert-EndoVis-18-VQA/', do_lower_case=True)
elif args.tokenizer_ver == 'gpt2v1':
tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
tokenizer.pad_token = tokenizer.eos_token
# data location
train_seq = [2, 3, 4, 6, 7, 9, 10, 11, 12, 14, 15]
val_seq = [1, 5, 16]
# train_seq = [1, 2, 3, 5, 6, 7, 9, 10, 14, 15, 16]
# val_seq = [4, 11, 12]
folder_head = 'dataset/EndoVis-18-VQA/seq_'
folder_tail = '/vqa/Classification/*.txt'
# dataloader
if args.model_ver == 'vb' or args.model_ver == 'vbrm' :
# or args.model_ver == 'vrvb' \
train_dataset = EndoVis18VQAVBClassification(train_seq, folder_head, folder_tail, patch_size = args.patch_size)
train_dataloader = DataLoader(dataset=train_dataset, batch_size= args.batch_size, shuffle=True)
val_dataset = EndoVis18VQAVBClassification(val_seq, folder_head, folder_tail, patch_size = args.patch_size)
val_dataloader = DataLoader(dataset=val_dataset, batch_size= args.batch_size, shuffle=False)
elif args.model_ver == 'efvlegpt2rs18' or args.model_ver == "efvlegpt2Swin" or args.model_ver == 'efvlegpt2ViT':
train_dataset = EndoVis18VQAGPTClassification(train_seq, folder_head, folder_tail, model_ver=args.model_ver)
train_dataloader = DataLoader(dataset=train_dataset, batch_size= args.batch_size, shuffle=True, num_workers=8)
val_dataset = EndoVis18VQAGPTClassification(val_seq, folder_head, folder_tail, model_ver=args.model_ver)
val_dataloader = DataLoader(dataset=val_dataset, batch_size= args.batch_size, shuffle=False, num_workers=8)
# num_classes
args.num_class = 18
elif args.dataset_type == 'c80':
'''
Train and test for cholec dataset
'''
# tokenizer
if args.tokenizer_ver == 'btv2': tokenizer = BertTokenizer.from_pretrained('./dataset/bertvocab/v2/bert-Cholec80-VQA/')
elif args.tokenizer_ver == 'btv3': tokenizer = BertTokenizer.from_pretrained('./dataset/bertvocab/v3/bert-Cholec80-VQA/', do_lower_case=True)
elif args.tokenizer_ver == 'gpt2v1':
tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
tokenizer.pad_token = tokenizer.eos_token
# dataloader
train_seq = [1, 2, 3, 4, 6, 7, 8, 9, 10, 13, 14, 15, 16, 18, 20, 21, 22, 23, 24, 25, 28, 29, 30, 32, 33, 34, 35, 36, 37, 38, 39, 40]
val_seq = [5, 11, 12, 17, 19, 26, 27, 31]
folder_head = 'dataset/Cholec80-VQA/Classification/'
folder_tail = '/*.txt'
# dataloader
if args.model_ver == 'vb' or args.model_ver == 'vbrm':
# or args.model_ver == 'vrvb'
train_dataset = Cholec80VQAVBClassification(train_seq, folder_head, folder_tail, patch_size = args.patch_size)
train_dataloader = DataLoader(dataset=train_dataset, batch_size= args.batch_size, shuffle=True, num_workers=4)
val_dataset = Cholec80VQAVBClassification(val_seq, folder_head, folder_tail, patch_size = args.patch_size)
val_dataloader = DataLoader(dataset=val_dataset, batch_size= args.batch_size, shuffle=False, num_workers=2)
elif args.model_ver == 'efvlegpt2rs18' or args.model_ver == "efvlegpt2Swin" or args.model_ver == 'efvlegpt2ViT':
train_dataset = Cholec80VQAGPTClassification(train_seq, folder_head, folder_tail, model_ver=args.model_ver)
train_dataloader = DataLoader(dataset=train_dataset, batch_size= args.batch_size, shuffle=True, num_workers=8)
val_dataset = Cholec80VQAGPTClassification(val_seq, folder_head, folder_tail, model_ver=args.model_ver)
val_dataloader = DataLoader(dataset=val_dataset, batch_size= args.batch_size, shuffle=False, num_workers=8)
# num_classes
args.num_class = 13
elif args.dataset_type == 'psi':
'''
Train and test for psi-ava-vqa dataset
'''
# tokenizer
if args.tokenizer_ver == 'btv2': tokenizer = BertTokenizer.from_pretrained("bert-base-uncased")
elif args.tokenizer_ver == 'btv3': tokenizer = BertTokenizer.from_pretrained("bert-base-uncased")
elif args.tokenizer_ver == 'gpt2v1':
tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
tokenizer.pad_token = tokenizer.eos_token
# dataloader
train_seq =[
"dataset/PSI-AVA-VQA/Train/C1_location.txt",
"dataset/PSI-AVA-VQA/Train/C3_phase.txt",
"dataset/PSI-AVA-VQA/Train/C4_step.txt"
]
val_seq =[
"dataset/PSI-AVA-VQA/Val/C1_location.txt",
"dataset/PSI-AVA-VQA/Val/C3_phase.txt",
"dataset/PSI-AVA-VQA/Val/C4_step.txt"
]
# dataloader
if args.model_ver == 'vb' or args.model_ver == 'vbrm':
# or args.model_ver == 'vrvb'
train_dataset = PSIAVAVQAVBClassification(train_seq, patch_size = args.patch_size)
train_dataloader = DataLoader(dataset=train_dataset, batch_size= args.batch_size, shuffle=True, num_workers=4)
val_dataset = PSIAVAVQAVBClassification(val_seq, patch_size = args.patch_size)
val_dataloader = DataLoader(dataset=val_dataset, batch_size= args.batch_size, shuffle=False, num_workers=2)
elif args.model_ver == 'efvlegpt2rs18' or args.model_ver == "efvlegpt2Swin" or args.model_ver == 'efvlegpt2ViT':
train_dataset = PSIAVAVQAGPTClassification(train_seq, model_ver=args.model_ver)
train_dataloader = DataLoader(dataset=train_dataset, batch_size= args.batch_size, shuffle=True, num_workers=8)
val_dataset = PSIAVAVQAGPTClassification(val_seq, model_ver=args.model_ver)
val_dataloader = DataLoader(dataset=val_dataset, batch_size= args.batch_size, shuffle=False, num_workers=8)
# num_classes
args.num_class = 35 #155 #35
# Initialize / load checkpoint
if args.checkpoint is None:
'''visualbert and visualbert resmlp'''
if args.model_ver == 'vb':
model = VisualBertClassification(vocab_size=len(tokenizer), layers=args.encoder_layers, n_heads=args.n_heads, num_class = args.num_class)
elif args.model_ver == 'vbrm':
model = VisualBertResMLPClassification(vocab_size=len(tokenizer), layers=args.encoder_layers, n_heads=args.n_heads, num_class = args.num_class, token_size = int(args.question_len+(args.patch_size * args.patch_size)))
elif args.model_ver == 'efvlegpt2rs18':
model = EFVLEGPT2RS18Classification(num_class = args.num_class, model_subver = args.model_subver, vis_pos_emb = args.vis_pos_emb)
elif args.model_ver == 'efvlegpt2Swin':
model = EFVLEGPT2SwinClassification(num_class = args.num_class, model_subver = args.model_subver, vis_pos_emb = args.vis_pos_emb)
elif args.model_ver == 'efvlegpt2ViT':
model = EFVLEGPT2ViTClassification(num_class = args.num_class, model_subver = args.model_subver, vis_pos_emb = args.vis_pos_emb)
# print(model)
# optimizer
optimizer = torch.optim.Adam(model.parameters(), lr=args.lr)
else:
checkpoint = torch.load(args.checkpoint, map_location=str(device))
start_epoch = checkpoint['epoch']
epochs_since_improvement = checkpoint['epochs_since_improvement']
best_Acc = checkpoint['Acc']
model = checkpoint['model']
optimizer = checkpoint['optimizer']
final_args = checkpoint['final_args']
for key in final_args.keys(): args.__setattr__(key, final_args[key])
# Move to GPU, if available
model = model.to(device)
# print(final_args)
pytorch_total_params = sum(p.numel() for p in model.parameters())
print('model params: ', pytorch_total_params)
# print(model)
# Loss function
criterion = nn.CrossEntropyLoss().to(device)
# validation
if args.validate:
test_acc, test_c_acc, test_precision, test_recall, test_fscore = validate(args, val_loader=val_dataloader, model = model, criterion=criterion, epoch=(args.epochs-1), tokenizer = tokenizer, device = device)
else:
for epoch in range(start_epoch, args.epochs):
if epochs_since_improvement > 0 and epochs_since_improvement % 5 == 0:
adjust_learning_rate(optimizer, 0.8)
# train
train_acc = train(args, train_dataloader=train_dataloader, model = model, criterion=criterion, optimizer=optimizer, epoch=epoch, tokenizer = tokenizer, device = device)
# validation
test_acc, test_c_acc, test_precision, test_recall, test_fscore = validate(args, val_loader=val_dataloader, model = model, criterion=criterion, epoch=epoch, tokenizer = tokenizer, device = device)
if test_acc >= best_results[0]:
epochs_since_improvement = 0
best_results[0] = test_acc
best_epoch[0] = epoch
# print('Best epoch: %d | Best acc: %.6f' %(best_epoch[0], best_results[0]))
save_clf_checkpoint(args.checkpoint_dir, epoch, epochs_since_improvement, model, optimizer, best_results[0], final_args)
else:
epochs_since_improvement += 1
print("\nEpochs since last improvement: %d\n" % (epochs_since_improvement,))
if train_acc >= 1.0: break