-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathodor_arena_base.m
468 lines (393 loc) · 18.3 KB
/
odor_arena_base.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
clear variables; clc
cd('D:\Misc-Trial-Vetting-Dataset');
import RealTimeOdorNavigation/RealTimeOdorNavigation.*
% import RealTimeOdorNavigation/deps/INI_Config/IniConfig.m
dataset = RealTimeOdorNavigation();
save('extra-trials_2.22-unfiltered.mat', 'dataset', '-v7.3');
%%
nTrials = 1:340;
sz = [length(nTrials) 12];
varTypes = ["uint16","datetime","uint16","double","double","double","double","double","double","double","double","double"];
varNames = ["Index #","Date","Subject ID","Total Frames","Total Valid","% Valid","Total Invalid","% Invalid","Due to Likelihood","% Likelihood","Due to Region","% Region"];
stat_table = table('Size',sz,'VariableTypes',varTypes,'VariableNames',varNames);
for trialNumb = 1:length(nTrials)
% uit.DisplayData;
allFrames = dataset.getDataForTrials(trialNumb, Valid_Type="all", ...
DAQ_Output=false,Likelihood=true,Validity_Verbose=true);
t_Frames = length(allFrames.PositionData.FrameIndex);
validFrames = dataset.getDataForTrials(trialNumb, Valid_Type="valid", ...
DAQ_Output=false, Validity_Verbose=true, Likelihood=true);
t_Valid = length(validFrames.PositionData.FrameIndex);
p_valid = round(t_Valid/t_Frames * 100, 1);
invalidFrames = dataset.getDataForTrials(trialNumb, Valid_Type="invalid", ...
DAQ_Output=false, Validity_Verbose=true, Likelihood=true);
likelihood_frames = invalidFrames.PositionData.FrameIndex( ...
strcmp(invalidFrames.PositionData.FrameValidityReason,'likelihood'));
region_frames = invalidFrames.PositionData.FrameIndex( ...
strcmp(invalidFrames.PositionData.FrameValidityReason,'region'));
t_Invalid = length(invalidFrames.PositionData.FrameIndex);
p_invalid = round(t_Invalid/t_Frames * 100, 1);
n_Likelihood = length(likelihood_frames);
p_likelihood = round(n_Likelihood/t_Frames * 100, 1);
n_Region = length(region_frames);
p_region = round(n_Region/t_Frames * 100, 1);
stat_table(trialNumb,:) = {trialNumb, allFrames.TrialDate, allFrames.SubjectID, ...
t_Frames, t_Valid, p_valid, t_Invalid, p_invalid, n_Likelihood, ...
p_likelihood, n_Region, p_region};
end
save('Lane_analysis_2-23.mat', 'stat_table', '-v7.3');
%%
trialNum = [163 184 197 214 242 256 276 279 304 312 315 316 317 323 332];
validFrames = dataset.getDataForTrials(trialNum, Valid_Type="valid", DAQ_Output=false);
%%
for ii = 6:length(trialNum)
fprintf('[RTON] Processing Data for Trial %i (#%i/%i)\n', trialNum(ii), ii, length(trialNum));
frames = validFrames(ii).PositionData.FrameIndex(:);
perc_frames = round(length(frames)*0.05);
if(perc_frames > 50), perc_frames = 50; end
frames = sort(randsample(frames(1:end),perc_frames));
% angles = dataset.TrialDataset(trialNum).getAngleForFrames("Neck", "Nose", frames(1:end));
coords = dataset.TrialDataset(trialNum(ii)).getCoordsForFrames(frames);
imgs_rear = dataset.getImagesForFramesInTrial(trialNum(ii), frames(1:end));
save(strcat("../Lane_trial_",num2str(trialNum(ii)),".mat"),"imgs_rear","coords","frames",'-v7.3');
% DO NOT USE VID_IMAGES. USE PROC_IMAGES.
end
%% need to overwrite vid_images var
trialNum = [163 184 197 214 242 256 276 279 304 312 315 316 317 323 332];
for ii = 1:numel(trialNum)
load(strcat("../Lane_trial_",num2str(trialNum(ii)),".mat"));
clear proc_images
name = dataset.TrialDataset(trialNum(ii)).Name;
dataset.TrialDataset(trialNum(ii)).VIDEO_FILE_SUFFIX = 'DLC_resnet50_odor-arenaOct3shuffle1_200000_labeled.mp4';
dataset.TrialDataset(trialNum(ii)).VideoPath = strcat(name, 'DLC_resnet50_odor-arenaOct3shuffle1_200000_labeled.mp4');
cd(strcat(name, '\images'));
delete *_dlc_processed.png
cd ..\..\
proc_images = dataset.getImagesForFramesInTrial(trialNum(ii), frames(1:end));
save(strcat("../Lane_trial_",num2str(trialNum(ii)),".mat"),"proc_images",'-append');
end
%%
% .mat file:
% coords(ii) - 1:6 ; 1,2
% vid_images(ii).Frame -------> proc_images(ii).Frame
% vid_images(ii).Image -------> proc_images(ii).Image
% new vars
% validity(ii): 0 = correct
% 1 = incorrect coord
% 2 = port interference
% 3 = body coord out-of-region
trial = 15;
trialNum = [163 184 197 214 242 256 276 279 304 312 315 316 317 323 332];
load(strcat("Lane_trial_",num2str(trialNum(trial)),".mat"));
arena_coords = dataset.getArenaDataForTrials(trialNum);
x_offset = int32(round(arena_coords(1,1,trial) - mean(arena_coords(1,1,:))));
y_offset = int32(round(arena_coords(1,2,trial) - mean(arena_coords(1,2,:))));
% crop parameters
x1 = 9;
x2 = 573;
y1 = 79;
y2 = 335;
validity = zeros(length(proc_images), 0);
figure('WindowState','maximized');
set(gcf,'Units','pixels');
set(groot,'defaultLineMarkerSize',20);
for zz = 1:length(proc_images)
hold off
% X: +5 px; Y: +30 px
% imagesc(vid_images(zz).Image(84:340, 39:603, :));
% X: +5 px; Y: +4 px
% imagesc(vid_images(zz).Image(84:340, 13:577, :));
% Y: crop parameters
% imagesc(vid_images(zz).Image(y1:y2, x1:x2, :));
% raw image
imagesc(proc_images(zz).Image());
title(strcat(int2str(proc_images(zz).Frame), " (",int2str(zz),")"));
axis image
axis tight
hold on
% coordinate plotting for DLC validation measures
plot(coords(1,1,zz), coords(1,2,zz), '.');
plot(coords(2,1,zz), coords(2,2,zz), '.');
plot(coords(3,1,zz), coords(3,2,zz), '.');
plot(coords(4,1,zz), coords(4,2,zz), '.');
plot(coords(5,1,zz), coords(5,2,zz), '.');
plot(coords(6,1,zz), coords(6,2,zz), '.');
plot(arena_coords(1,1,trial), arena_coords(1,2,trial), '.');
plot([CameraFrame.LEFT_INSET, CameraFrame.LEFT_INSET],[0, 256],'-');
plot([CameraFrame.WIDTH - CameraFrame.RIGHT_INSET, ...
CameraFrame.WIDTH - CameraFrame.RIGHT_INSET],[0, 256],'-');
figure(gcf);
waitfor(gcf,'CurrentCharacter');
switch uint8(get(gcf,'CurrentCharacter'))
case 97, validity(zz) = 0;
case 115, validity(zz) = 1;
case 100, validity(zz) = 2;
case 102, validity(zz) = 3;
otherwise, break;
end
set(gcf,'CurrentCharacter','p');
pause(.3);
end
%save(strcat("Lane_trial_",num2str(trialNum(trial)),".mat"),"validity",'-append');
fprintf('[RTON] Validation %i/%i Complete: Trial %i\n', trial, length(trialNum), trialNum(trial));
close all
%%
fileName = strcat("Lane_trial_",num2str(trialNum(:)),".mat");
validity_mat = zeros(15,50);
%%
for t = 1:15
load(fileName(t), 'validity');
sz = numel(validity);
validity_mat(t,1:sz) = validity(1,1:sz);
end
%%
Trial.saveData(dataset.TrialDataset(trialNum), 'frames', frames);
%%
for ii = 1:numel(slim_frames)
[nRows, ~, ~] = size(slim_frames(ii).Image);
if nRows > 300
slim_frames(ii).Image = imcrop(slim_frames(ii).Image, [10 80 563 255]); % vid_images(ii).Image(80:335, 10:573, :)
end
figure, set(gcf,'Units','pixels','WindowState','maximized');
image(slim_frames(ii).Image);
axis image
hold on
title(slim_frames(ii).Frame);
%text(20,285, sprintf('Neck->Nose %0.5f', angles(ii,2)), 'FontSize',12);
% plot([rear_coords(1,1,ii), rear_coords(4,1,ii)], [rear_coords(1,2,ii), rear_coords(4,2,ii)], '.');
% plot([rear_coords(4,1,ii), rear_coords(5,1,ii)], [rear_coords(4,2,ii), rear_coords(5,2,ii)], '.');
% plot([rear_coords(5,1,ii), rear_coords(6,1,ii)], [rear_coords(5,2,ii), rear_coords(6,2,ii)], '.');
%plot(rear_coords(7,1,ii), rear_coords(7,2,ii), '.');
end
%% %%%%%%%%%%%%%%%%%%%%%%%%%%
% REARING DATA GROUND TRUTH %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% rand_sample = randsample(dataset.TrialDataset(1:end), 25); % random sample of 25 trials
trial_info = struct; % create struct to hold data
% loop through selected trials, populate struct
for zz = 1:numel(dataset.TrialDataset)
fprintf('[RTON] === Iterating trial %i of %i ===\n', zz, numel(dataset.TrialDataset))
trial_info(zz).Name = dataset.TrialDataset(zz).Name; % Name
% Index w/in Dataset
trial_info(zz).Dataset_Index = dataset.filterTrialset("byName",trial_info(zz).Name);
trial_info(zz).Subject = dataset.TrialDataset(zz).SubjectID; % SubjectID
[t_behav, ~, ~] = dataset.TrialDataset(zz).getBehavioralData(IncludeImages=false);
if ~isempty(t_behav), trial_info(zz).Potential_Rearing = t_behav;
else, fprintf('[RTON] Trial %i contains 0 potential rearing frames\n',zz); end
end
save('lane-final-dataset.mat', 'trial_info');
%% frame selection/specification loop
for ii = 2:numel(trial_info_trimmed)
f_index = 2;
min_frames = 30; % minimum frames between each index (30 = .5 sec)
min_xz = 0.100; % minimum xz_diff between each index
while ~isempty(trial_info_trimmed(ii).Potential_Rearing(f_index))
curr_frame = trial_info_trimmed(ii).Potential_Rearing(f_index).Frame;
prev_frame = trial_info_trimmed(ii).Potential_Rearing(f_index - 1).Frame;
f_diff = curr_frame - prev_frame;
curr_xz = trial_info_trimmed(ii).Potential_Rearing(f_index).xz_diff;
prev_xz = trial_info_trimmed(ii).Potential_Rearing(f_index - 1).xz_diff;
xz_diff = abs(curr_xz - prev_xz);
if f_diff < min_frames % Frame numbers must be > min_frames
if xz_diff < min_xz % xz_diff must be > min_xz
fprintf('[RTON] Removed Frame [%i]:\tf_diff: %i\txz_diff: %d\n', ...
curr_frame, f_diff, xz_diff);
trial_info_trimmed(ii).Potential_Rearing(f_index) = []; % delete entry
else
fprintf('[RTON] Valid Frame [%i]:\tf_diff: %i\txz_diff: %d\n', ...
curr_frame, f_diff, xz_diff);
f_index = f_index + 1;
end
else
fprintf('[RTON] Valid Frame [%i]:\tf_diff: %i\txz_diff: %d\n', ...
curr_frame, f_diff, xz_diff);
f_index = f_index + 1;
end
if f_index > numel(trial_info_trimmed(ii).Potential_Rearing)
break
end
end
end
[~,index] = sortrows([trial_info_trimmed.Subject].');
trial_info_trimmed = trial_info_trimmed(index);
%% Rearing Validation
% .mat file:
% rear_trim(iTrial).Rearing_Frames(ii).Frame
% rear_trim(iTrial).Rearing_Frames(ii).Image
% rear_trim(iTrial).Rearing_Frames(ii).xz_diff
% rear_trim(iTrial).Rearing_Frames(ii).Validity (likelihood validity)
% new vars
% rear_trim(iTrial).Rearing_Frames(ii).rear_value: 0 = rearing
% 1 = not rearing
% 2 = head raise
% 3 = at port
% 4 = unsure
clear rear_value
figure('WindowState','maximized');
set(gcf,'Units','pixels');
set(groot,'defaultLineMarkerSize',20);
% loops through every trial in trial_info_trimmed
for iTrial = 4 : numel(trial_info_trimmed)
fprintf('[RTON] trial_info_trimmed: trial %i of %i\n', iTrial, ...
numel(trial_info_trimmed));
for ii = 1 : numel(trial_info_trimmed(iTrial).Potential_Rearing)
if isfield(trial_info_trimmed(iTrial).Potential_Rearing, 'rear_value')
if ~isempty(trial_info_trimmed(iTrial).Potential_Rearing(ii).rear_value)
continue;
end
end
hold off
imagesc(trial_info_trimmed(iTrial).Potential_Rearing(ii).Image());
title(strcat(int2str(trial_info_trimmed(iTrial).Potential_Rearing(ii).Frame), ...
" (", int2str(ii), ")", " - a = rearing, s = not rearing,", ...
" d = head raise, f = at port, v = unsure"));
axis image
axis tight
hold on
figure(gcf);
waitfor(gcf,'CurrentCharacter');
switch uint8(get(gcf,'CurrentCharacter'))
% a = 0 rearing
case 97, trial_info_trimmed(iTrial).Potential_Rearing(ii).rear_value = 0;
% s = 1 not rearing
case 115, trial_info_trimmed(iTrial).Potential_Rearing(ii).rear_value = 1;
% d = 2 head raise
case 100, trial_info_trimmed(iTrial).Potential_Rearing(ii).rear_value = 2;
% f = 3 at port
case 102, trial_info_trimmed(iTrial).Potential_Rearing(ii).rear_value = 3;
% v = 4 unsure
case 118, trial_info_trimmed(iTrial).Potential_Rearing(ii).rear_value = 4;
otherwise, break;
end
set(gcf,'CurrentCharacter','p');
pause(.3);
end
save('rearing_test_8.29-final.mat', 'trial_info_trimmed', '-append');
end
close all
%% cleanup/remove images for data storage (after making full copy)
for ii = 1:numel(trial_info_trimmed)
for zz = 1:numel(trial_info_trimmed(ii).Potential_Rearing)
if isfield(trial_info_trimmed(ii).Potential_Rearing, 'Image')
trial_info_trimmed(ii).Potential_Rearing = rmfield( ...
trial_info_trimmed(ii).Potential_Rearing, 'Image');
else
continue;
end
end
end
%% delete
frame_count = 0;
for ii = 1:numel(trial_info_trimmed)
frame_count = frame_count + numel(trial_info_trimmed(ii).Potential_Rearing);
end
%% body euc distance transformations
% get trial list indices for working dataset
trial_list(length(rear_trim)) = 0;
for zz = 1 : length(trial_list)
trial_list(zz) = dataset.filterTrialset("byName",rear_trim(zz).Name);
end
for ii = 1 : length(trial_list)
t_trial = dataset.TrialDataset(trial_list(ii));
t_frames = [rear_trim(ii).Rearing_Frames.Frame].';
t_dist = t_trial.getBodyDistanceForFrames(t_frames);
for jj = 1 : length(t_frames)
rear_trim(ii).Rearing_Frames(jj).Difference = t_dist(jj,2);
end
end
%%
count = 1;
data_out = struct;
for zz = 1:numel(trial_info)
if isfield(trial_info(zz).Potential_Rearing,'Frame')
for ii = 1:numel(trial_info(zz).Potential_Rearing)
data_out(count).Trial_Number = trial_info(zz).Dataset_Index;
data_out(count).Subject = trial_info(zz).Subject;
data_out(count).Frame = trial_info(zz).Potential_Rearing(ii).Frame;
data_out(count).xz_diff = trial_info(zz).Potential_Rearing(ii).xz_diff;
data_out(count).HeadBody = trial_info(zz).Potential_Rearing(ii).HeadBody;
data_out(count).MouseX = trial_info(zz).Potential_Rearing(ii).MouseX;
data_out(count).MouseY = trial_info(zz).Potential_Rearing(ii).MouseY;
data_out(count).PortX = trial_info(zz).Potential_Rearing(ii).PortX;
data_out(count).PortY = trial_info(zz).Potential_Rearing(ii).PortY;
data_out(count).Name = trial_info(zz).Name;
count = count + 1;
end
end
end
trial_info1 = table({trial_info.Name}.', [trial_info.Dataset_Index].', [trial_info.Subject].', {trial_info.Potential_Rearing}.', 'VariableNames', {'Name', 'Dataset_Index', 'Subject', 'Potential_Rearing'});
temp = struct2cell(data_out.').';
data_out1 = table([data_out.Trial_Number].', [data_out.Subject].', [data_out.Frame].', [data_out.xz_diff].', [data_out.HeadBody].', [data_out.MouseX].', [data_out.MouseY].', [data_out.PortX].', [data_out.PortY].', temp(:, 10), 'VariableNames', {'Trial_Number', 'Subject', 'Frame', 'xz_diff', 'HeadBody', 'MouseX', 'MouseY', 'PortX', 'PortY', 'Name'});
clear temp
writetable(data_out1,filename);
%%
%{
%% Velocity/Timing Calculations
port_med = [0 0];
bodyCoords = [];
likelihood_matrix = [];
for k = 1:length(trial_data)
port_med = repmat([trial_data(k).arena(1).port(1).x trial_data(k).arena(1).port(1).y], length(trial_data(k).frame), 1);
for z = 1:length(trial_data(k).frame)
bodyCoords(end+1, :) = [trial_data(k).frame(z).bodyPart.body.x trial_data(k).frame(z).bodyPart.body.y];
likelihood_matrix(end+1, :) = trial_data(k).frame(z).bodyPart.body.likelihood;
end
vel_matrix = vecnorm(bodyCoords' - port_med')';
vel_change = vecnorm((bodyCoords(1:end-1, :) - bodyCoords(2:end, :)), 2, 2);
% startFrame = first instance of likelihood_matrix > 0.99 & vel_change
% < 2.0
for t = 2:length(trial_data(k).frame)
if(likelihood_matrix(t) > 0.99 && vel_change(t) < 1)
trial_data(k).stats(1).startFrame = t;
fprintf('Trial %i - startFrame: %i\n', k, t);
break
end
end
% endFrame = vel_matrix < 20 & likelihood > 0.995 & vel_change < 1.0
for v = trial_data(k).stats(1).startFrame+60:length(trial_data(k).frame)
if(likelihood_matrix(v) > 0.99 && vel_change(v-1) < 2 && vel_matrix(v) < 20)
trial_data(k).stats(1).endFrame = v;
fprintf('Trial %i - endFrame: %i\n', k, v);
break
end
end
%{
% jumps: startFrame = first vel_change > 50; endFrame (4th instance of) = (vel_change <
% 50) + 1
for p = trial_data(k).stats(1).startFrame:trial_data(k).stats(1).endFrame
if(vel_change(p) > 50)
if(trial_data(k).stats(1).jumps(end).startFrame > 0)
while vel_change(p) > 50
p = p + 1;
end
trial_data(k).stats(1).jumps(end).endFrame = p;
trial_data(k).stats(1).jumps(end+1).startFrame = 0;
continue
end
trial_data(k).stats(1).jumps(end).startFrame = p;
while vel_change(p) > 50
p = p + 1;
end
end
end
%}
% jumps: via likelihood_matrix
% find frame().index of all frame().bodyPart.body.likelihood < 0.9
trial_data(k).stats(1).jumps = find(arrayfun(@(index) (trial_data(k).frame(index).bodyPart.body.likelihood < 0.9 && trial_data(k).frame(index).bodyPart.body.likelihood > 0.2), 1:numel(trial_data(k).frame)))';
%figure('Name', append(trial_data(k).stats(1).trialName, ': vel_matrix')), plot(vel_matrix(1:numel(trial_data(k).frame)-1), 'r');
%drawJumps(trial_data, k);
%figure('Name', append(trial_data(k).stats(1).trialName, ': vel_change')), plot(vel_change(1:numel(trial_data(k).frame)-1), 'b');
%drawJumps(trial_data, k);
figure('Name', append(trial_data(k).stats(1).trialName, ': likelihood_matrix')), plot(likelihood_matrix(1:numel(trial_data(k).frame)-1), 'g');
drawJumps(trial_data, k);
end
function drawJumps(trial_data, trialnum)
hold on
for t = 2:numel(trial_data(trialnum).stats(1).jumps)-2
if(trial_data(trialnum).stats(1).jumps(t) ~= trial_data(trialnum).stats(1).jumps(t-1)+1 || trial_data(trialnum).stats(1).jumps(t) ~= trial_data(trialnum).stats(1).jumps(t+1)-1)
xline(trial_data(trialnum).stats(1).jumps(t), '--k');
end
end
hold off
end
%}