@@ -909,6 +909,11 @@ def similarity_search(
909
909
Args:
910
910
query (str): Query text to search for.
911
911
k (int): Number of results to return. Defaults to 4.
912
+ params (Dict[str, Any]): The search params for the index type.
913
+ Defaults to empty dict.
914
+ filter (Optional[Dict[str, Any]]): Dictionary of argument(s) to
915
+ filter on metadata.
916
+ Defaults to None.
912
917
913
918
Returns:
914
919
List of Documents most similar to the query.
@@ -936,6 +941,11 @@ def similarity_search_with_score(
936
941
Args:
937
942
query: Text to look up documents similar to.
938
943
k: Number of Documents to return. Defaults to 4.
944
+ params (Dict[str, Any]): The search params for the index type.
945
+ Defaults to empty dict.
946
+ filter (Optional[Dict[str, Any]]): Dictionary of argument(s) to
947
+ filter on metadata.
948
+ Defaults to None.
939
949
940
950
Returns:
941
951
List of Documents most similar to the query and score for each
@@ -972,6 +982,11 @@ def similarity_search_with_score_by_vector(
972
982
Args:
973
983
embedding (List[float]): The embedding vector to compare against.
974
984
k (int, optional): The number of top similar documents to retrieve.
985
+ filter (Optional[Dict[str, Any]]): Dictionary of argument(s) to
986
+ filter on metadata.
987
+ Defaults to None.
988
+ params (Dict[str, Any]): The search params for the index type.
989
+ Defaults to empty dict.
975
990
976
991
Returns:
977
992
List[Tuple[Document, float]]: A list of tuples, each containing
@@ -1077,19 +1092,25 @@ def similarity_search_by_vector(
1077
1092
embedding : List [float ],
1078
1093
k : int = 4 ,
1079
1094
filter : Optional [Dict [str , Any ]] = None ,
1095
+ params : Dict [str , Any ] = {},
1080
1096
** kwargs : Any ,
1081
1097
) -> List [Document ]:
1082
1098
"""Return docs most similar to embedding vector.
1083
1099
1084
1100
Args:
1085
1101
embedding: Embedding to look up documents similar to.
1086
1102
k: Number of Documents to return. Defaults to 4.
1103
+ filter (Optional[Dict[str, Any]]): Dictionary of argument(s) to
1104
+ filter on metadata.
1105
+ Defaults to None.
1106
+ params (Dict[str, Any]): The search params for the index type.
1107
+ Defaults to empty dict.
1087
1108
1088
1109
Returns:
1089
1110
List of Documents most similar to the query vector.
1090
1111
"""
1091
1112
docs_and_scores = self .similarity_search_with_score_by_vector (
1092
- embedding = embedding , k = k , filter = filter , ** kwargs
1113
+ embedding = embedding , k = k , filter = filter , params = params , ** kwargs
1093
1114
)
1094
1115
return [doc for doc , _ in docs_and_scores ]
1095
1116
0 commit comments