|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "raw", |
| 5 | + "id": "afaf8039", |
| 6 | + "metadata": {}, |
| 7 | + "source": [ |
| 8 | + "---\n", |
| 9 | + "sidebar_label: Goodfire\n", |
| 10 | + "---" |
| 11 | + ] |
| 12 | + }, |
| 13 | + { |
| 14 | + "cell_type": "markdown", |
| 15 | + "id": "e49f1e0d", |
| 16 | + "metadata": {}, |
| 17 | + "source": [ |
| 18 | + "# ChatGoodfire\n", |
| 19 | + "\n", |
| 20 | + "This will help you getting started with Goodfire [chat models](/docs/concepts/chat_models). For detailed documentation of all ChatGoodfire features and configurations head to the [PyPI project page](https://pypi.org/project/langchain-goodfire/), or go directly to the [Goodfire SDK docs](https://docs.goodfire.ai/sdk-reference/example). All of the Goodfire-specific functionality (e.g. SAE features, variants, etc.) is available via the main `goodfire` package. This integration is a wrapper around the Goodfire SDK.\n", |
| 21 | + "\n", |
| 22 | + "## Overview\n", |
| 23 | + "### Integration details\n", |
| 24 | + "\n", |
| 25 | + "| Class | Package | Local | Serializable | JS support | Package downloads | Package latest |\n", |
| 26 | + "| :--- | :--- | :---: | :---: | :---: | :---: | :---: |\n", |
| 27 | + "| [ChatGoodfire](https://python.langchain.com/api_reference/goodfire/chat_models/langchain_goodfire.chat_models.ChatGoodfire.html) | [langchain-goodfire](https://python.langchain.com/api_reference/goodfire/) | ❌ | ❌ | ❌ |  |  |\n", |
| 28 | + "\n", |
| 29 | + "### Model features\n", |
| 30 | + "| [Tool calling](/docs/how_to/tool_calling) | [Structured output](/docs/how_to/structured_output/) | JSON mode | [Image input](/docs/how_to/multimodal_inputs/) | Audio input | Video input | [Token-level streaming](/docs/how_to/chat_streaming/) | Native async | [Token usage](/docs/how_to/chat_token_usage_tracking/) | [Logprobs](/docs/how_to/logprobs/) |\n", |
| 31 | + "| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |\n", |
| 32 | + "| ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ✅ | ✅ | ✅ | ❌ | \n", |
| 33 | + "\n", |
| 34 | + "## Setup\n", |
| 35 | + "\n", |
| 36 | + "To access Goodfire models you'll need to create a/an Goodfire account, get an API key, and install the `langchain-goodfire` integration package.\n", |
| 37 | + "\n", |
| 38 | + "### Credentials\n", |
| 39 | + "\n", |
| 40 | + "Head to [Goodfire Settings](https://platform.goodfire.ai/organization/settings/api-keys) to sign up to Goodfire and generate an API key. Once you've done this set the GOODFIRE_API_KEY environment variable." |
| 41 | + ] |
| 42 | + }, |
| 43 | + { |
| 44 | + "cell_type": "code", |
| 45 | + "execution_count": 1, |
| 46 | + "id": "433e8d2b-9519-4b49-b2c4-7ab65b046c94", |
| 47 | + "metadata": {}, |
| 48 | + "outputs": [], |
| 49 | + "source": [ |
| 50 | + "import getpass\n", |
| 51 | + "import os\n", |
| 52 | + "\n", |
| 53 | + "if not os.getenv(\"GOODFIRE_API_KEY\"):\n", |
| 54 | + " os.environ[\"GOODFIRE_API_KEY\"] = getpass.getpass(\"Enter your Goodfire API key: \")" |
| 55 | + ] |
| 56 | + }, |
| 57 | + { |
| 58 | + "cell_type": "markdown", |
| 59 | + "id": "72ee0c4b-9764-423a-9dbf-95129e185210", |
| 60 | + "metadata": {}, |
| 61 | + "source": [ |
| 62 | + "If you want to get automated tracing of your model calls you can also set your [LangSmith](https://docs.smith.langchain.com/) API key by uncommenting below:" |
| 63 | + ] |
| 64 | + }, |
| 65 | + { |
| 66 | + "cell_type": "code", |
| 67 | + "execution_count": null, |
| 68 | + "id": "a15d341e-3e26-4ca3-830b-5aab30ed66de", |
| 69 | + "metadata": {}, |
| 70 | + "outputs": [], |
| 71 | + "source": [ |
| 72 | + "# os.environ[\"LANGSMITH_TRACING\"] = \"true\"\n", |
| 73 | + "# os.environ[\"LANGSMITH_API_KEY\"] = getpass.getpass(\"Enter your LangSmith API key: \")" |
| 74 | + ] |
| 75 | + }, |
| 76 | + { |
| 77 | + "cell_type": "markdown", |
| 78 | + "id": "0730d6a1-c893-4840-9817-5e5251676d5d", |
| 79 | + "metadata": {}, |
| 80 | + "source": [ |
| 81 | + "### Installation\n", |
| 82 | + "\n", |
| 83 | + "The LangChain Goodfire integration lives in the `langchain-goodfire` package:" |
| 84 | + ] |
| 85 | + }, |
| 86 | + { |
| 87 | + "cell_type": "code", |
| 88 | + "execution_count": 2, |
| 89 | + "id": "652d6238-1f87-422a-b135-f5abbb8652fc", |
| 90 | + "metadata": {}, |
| 91 | + "outputs": [ |
| 92 | + { |
| 93 | + "name": "stdout", |
| 94 | + "output_type": "stream", |
| 95 | + "text": [ |
| 96 | + "Note: you may need to restart the kernel to use updated packages.\n" |
| 97 | + ] |
| 98 | + } |
| 99 | + ], |
| 100 | + "source": [ |
| 101 | + "%pip install -qU langchain-goodfire" |
| 102 | + ] |
| 103 | + }, |
| 104 | + { |
| 105 | + "cell_type": "markdown", |
| 106 | + "id": "a38cde65-254d-4219-a441-068766c0d4b5", |
| 107 | + "metadata": {}, |
| 108 | + "source": [ |
| 109 | + "## Instantiation\n", |
| 110 | + "\n", |
| 111 | + "Now we can instantiate our model object and generate chat completions:" |
| 112 | + ] |
| 113 | + }, |
| 114 | + { |
| 115 | + "cell_type": "code", |
| 116 | + "execution_count": 3, |
| 117 | + "id": "cb09c344-1836-4e0c-acf8-11d13ac1dbae", |
| 118 | + "metadata": {}, |
| 119 | + "outputs": [ |
| 120 | + { |
| 121 | + "name": "stderr", |
| 122 | + "output_type": "stream", |
| 123 | + "text": [ |
| 124 | + "None of PyTorch, TensorFlow >= 2.0, or Flax have been found. Models won't be available and only tokenizers, configuration and file/data utilities can be used.\n" |
| 125 | + ] |
| 126 | + } |
| 127 | + ], |
| 128 | + "source": [ |
| 129 | + "import goodfire\n", |
| 130 | + "from langchain_goodfire import ChatGoodfire\n", |
| 131 | + "\n", |
| 132 | + "base_variant = goodfire.Variant(\"meta-llama/Llama-3.3-70B-Instruct\")\n", |
| 133 | + "\n", |
| 134 | + "llm = ChatGoodfire(\n", |
| 135 | + " model=base_variant,\n", |
| 136 | + " temperature=0,\n", |
| 137 | + " max_completion_tokens=1000,\n", |
| 138 | + " seed=42,\n", |
| 139 | + ")" |
| 140 | + ] |
| 141 | + }, |
| 142 | + { |
| 143 | + "cell_type": "markdown", |
| 144 | + "id": "2b4f3e15", |
| 145 | + "metadata": {}, |
| 146 | + "source": [ |
| 147 | + "## Invocation" |
| 148 | + ] |
| 149 | + }, |
| 150 | + { |
| 151 | + "cell_type": "code", |
| 152 | + "execution_count": 4, |
| 153 | + "id": "62e0dbc3", |
| 154 | + "metadata": { |
| 155 | + "tags": [] |
| 156 | + }, |
| 157 | + "outputs": [ |
| 158 | + { |
| 159 | + "data": { |
| 160 | + "text/plain": [ |
| 161 | + "AIMessage(content=\"J'adore la programmation.\", additional_kwargs={}, response_metadata={}, id='run-8d43cf35-bce8-4827-8935-c64f8fb78cd0-0', usage_metadata={'input_tokens': 51, 'output_tokens': 39, 'total_tokens': 90})" |
| 162 | + ] |
| 163 | + }, |
| 164 | + "execution_count": 4, |
| 165 | + "metadata": {}, |
| 166 | + "output_type": "execute_result" |
| 167 | + } |
| 168 | + ], |
| 169 | + "source": [ |
| 170 | + "messages = [\n", |
| 171 | + " (\n", |
| 172 | + " \"system\",\n", |
| 173 | + " \"You are a helpful assistant that translates English to French. Translate the user sentence.\",\n", |
| 174 | + " ),\n", |
| 175 | + " (\"human\", \"I love programming.\"),\n", |
| 176 | + "]\n", |
| 177 | + "ai_msg = await llm.ainvoke(messages)\n", |
| 178 | + "ai_msg" |
| 179 | + ] |
| 180 | + }, |
| 181 | + { |
| 182 | + "cell_type": "code", |
| 183 | + "execution_count": 5, |
| 184 | + "id": "d86145b3-bfef-46e8-b227-4dda5c9c2705", |
| 185 | + "metadata": {}, |
| 186 | + "outputs": [ |
| 187 | + { |
| 188 | + "name": "stdout", |
| 189 | + "output_type": "stream", |
| 190 | + "text": [ |
| 191 | + "J'adore la programmation.\n" |
| 192 | + ] |
| 193 | + } |
| 194 | + ], |
| 195 | + "source": [ |
| 196 | + "print(ai_msg.content)" |
| 197 | + ] |
| 198 | + }, |
| 199 | + { |
| 200 | + "cell_type": "markdown", |
| 201 | + "id": "18e2bfc0-7e78-4528-a73f-499ac150dca8", |
| 202 | + "metadata": {}, |
| 203 | + "source": [ |
| 204 | + "## Chaining\n", |
| 205 | + "\n", |
| 206 | + "We can [chain](/docs/how_to/sequence/) our model with a prompt template like so:" |
| 207 | + ] |
| 208 | + }, |
| 209 | + { |
| 210 | + "cell_type": "code", |
| 211 | + "execution_count": 6, |
| 212 | + "id": "e197d1d7-a070-4c96-9f8a-a0e86d046e0b", |
| 213 | + "metadata": {}, |
| 214 | + "outputs": [ |
| 215 | + { |
| 216 | + "data": { |
| 217 | + "text/plain": [ |
| 218 | + "AIMessage(content='Ich liebe das Programmieren. How can I help you with programming today?', additional_kwargs={}, response_metadata={}, id='run-03d1a585-8234-46f1-a8df-bf9143fe3309-0', usage_metadata={'input_tokens': 46, 'output_tokens': 46, 'total_tokens': 92})" |
| 219 | + ] |
| 220 | + }, |
| 221 | + "execution_count": 6, |
| 222 | + "metadata": {}, |
| 223 | + "output_type": "execute_result" |
| 224 | + } |
| 225 | + ], |
| 226 | + "source": [ |
| 227 | + "from langchain_core.prompts import ChatPromptTemplate\n", |
| 228 | + "\n", |
| 229 | + "prompt = ChatPromptTemplate(\n", |
| 230 | + " [\n", |
| 231 | + " (\n", |
| 232 | + " \"system\",\n", |
| 233 | + " \"You are a helpful assistant that translates {input_language} to {output_language}.\",\n", |
| 234 | + " ),\n", |
| 235 | + " (\"human\", \"{input}\"),\n", |
| 236 | + " ]\n", |
| 237 | + ")\n", |
| 238 | + "\n", |
| 239 | + "chain = prompt | llm\n", |
| 240 | + "await chain.ainvoke(\n", |
| 241 | + " {\n", |
| 242 | + " \"input_language\": \"English\",\n", |
| 243 | + " \"output_language\": \"German\",\n", |
| 244 | + " \"input\": \"I love programming.\",\n", |
| 245 | + " }\n", |
| 246 | + ")" |
| 247 | + ] |
| 248 | + }, |
| 249 | + { |
| 250 | + "cell_type": "markdown", |
| 251 | + "id": "d1ee55bc-ffc8-4cfa-801c-993953a08cfd", |
| 252 | + "metadata": {}, |
| 253 | + "source": [ |
| 254 | + "## Goodfire-specific functionality\n", |
| 255 | + "\n", |
| 256 | + "To use Goodfire-specific functionality such as SAE features and variants, you can use the `goodfire` package directly." |
| 257 | + ] |
| 258 | + }, |
| 259 | + { |
| 260 | + "cell_type": "code", |
| 261 | + "execution_count": 7, |
| 262 | + "id": "3aef9e0a", |
| 263 | + "metadata": {}, |
| 264 | + "outputs": [ |
| 265 | + { |
| 266 | + "data": { |
| 267 | + "text/plain": [ |
| 268 | + "FeatureGroup([\n", |
| 269 | + " 0: \"The assistant should adopt the persona of a pirate\",\n", |
| 270 | + " 1: \"The assistant should roleplay as a pirate\",\n", |
| 271 | + " 2: \"The assistant should engage with pirate-themed content or roleplay as a pirate\",\n", |
| 272 | + " 3: \"The assistant should roleplay as a character\",\n", |
| 273 | + " 4: \"The assistant should roleplay as a specific character\",\n", |
| 274 | + " 5: \"The assistant should roleplay as a game character or NPC\",\n", |
| 275 | + " 6: \"The assistant should roleplay as a human character\",\n", |
| 276 | + " 7: \"Requests for the assistant to roleplay or pretend to be something else\",\n", |
| 277 | + " 8: \"Requests for the assistant to roleplay or pretend to be something\",\n", |
| 278 | + " 9: \"The assistant is being assigned a role or persona to roleplay\"\n", |
| 279 | + "])" |
| 280 | + ] |
| 281 | + }, |
| 282 | + "execution_count": 7, |
| 283 | + "metadata": {}, |
| 284 | + "output_type": "execute_result" |
| 285 | + } |
| 286 | + ], |
| 287 | + "source": [ |
| 288 | + "client = goodfire.Client(api_key=os.environ[\"GOODFIRE_API_KEY\"])\n", |
| 289 | + "\n", |
| 290 | + "pirate_features = client.features.search(\n", |
| 291 | + " \"assistant should roleplay as a pirate\", base_variant\n", |
| 292 | + ")\n", |
| 293 | + "pirate_features" |
| 294 | + ] |
| 295 | + }, |
| 296 | + { |
| 297 | + "cell_type": "code", |
| 298 | + "execution_count": 8, |
| 299 | + "id": "52f03a00", |
| 300 | + "metadata": {}, |
| 301 | + "outputs": [ |
| 302 | + { |
| 303 | + "data": { |
| 304 | + "text/plain": [ |
| 305 | + "AIMessage(content='Why did the scarecrow win an award? Because he was outstanding in his field! Arrr! Hope that made ye laugh, matey!', additional_kwargs={}, response_metadata={}, id='run-7d8bd30f-7f80-41cb-bdb6-25c29c22a7ce-0', usage_metadata={'input_tokens': 35, 'output_tokens': 60, 'total_tokens': 95})" |
| 306 | + ] |
| 307 | + }, |
| 308 | + "execution_count": 8, |
| 309 | + "metadata": {}, |
| 310 | + "output_type": "execute_result" |
| 311 | + } |
| 312 | + ], |
| 313 | + "source": [ |
| 314 | + "pirate_variant = goodfire.Variant(\"meta-llama/Llama-3.3-70B-Instruct\")\n", |
| 315 | + "\n", |
| 316 | + "pirate_variant.set(pirate_features[0], 0.4)\n", |
| 317 | + "pirate_variant.set(pirate_features[1], 0.3)\n", |
| 318 | + "\n", |
| 319 | + "await llm.ainvoke(\"Tell me a joke\", model=pirate_variant)" |
| 320 | + ] |
| 321 | + }, |
| 322 | + { |
| 323 | + "cell_type": "markdown", |
| 324 | + "id": "3a5bb5ca-c3ae-4a58-be67-2cd18574b9a3", |
| 325 | + "metadata": {}, |
| 326 | + "source": [ |
| 327 | + "## API reference\n", |
| 328 | + "\n", |
| 329 | + "For detailed documentation of all ChatGoodfire features and configurations head to the [API reference](https://python.langchain.com/api_reference/goodfire/chat_models/langchain_goodfire.chat_models.ChatGoodfire.html)" |
| 330 | + ] |
| 331 | + } |
| 332 | + ], |
| 333 | + "metadata": { |
| 334 | + "kernelspec": { |
| 335 | + "display_name": ".venv", |
| 336 | + "language": "python", |
| 337 | + "name": "python3" |
| 338 | + }, |
| 339 | + "language_info": { |
| 340 | + "codemirror_mode": { |
| 341 | + "name": "ipython", |
| 342 | + "version": 3 |
| 343 | + }, |
| 344 | + "file_extension": ".py", |
| 345 | + "mimetype": "text/x-python", |
| 346 | + "name": "python", |
| 347 | + "nbconvert_exporter": "python", |
| 348 | + "pygments_lexer": "ipython3", |
| 349 | + "version": "3.12.8" |
| 350 | + } |
| 351 | + }, |
| 352 | + "nbformat": 4, |
| 353 | + "nbformat_minor": 5 |
| 354 | +} |
0 commit comments