Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

LLMGraphTransformer not working with Gemini #26624

Open
5 tasks done
th-cds opened this issue Sep 18, 2024 · 5 comments
Open
5 tasks done

LLMGraphTransformer not working with Gemini #26624

th-cds opened this issue Sep 18, 2024 · 5 comments
Labels
🤖:bug Related to a bug, vulnerability, unexpected error with an existing feature Ɑ: core Related to langchain-core

Comments

@th-cds
Copy link

th-cds commented Sep 18, 2024

Checked other resources

  • I added a very descriptive title to this issue.
  • I searched the LangChain documentation with the integrated search.
  • I used the GitHub search to find a similar question and didn't find it.
  • I am sure that this is a bug in LangChain rather than my code.
  • The bug is not resolved by updating to the latest stable version of LangChain (or the specific integration package).

Example Code

import asyncio
import json
from typing import Any, Dict, List, Optional, Sequence, Tuple, Type, Union, cast

from langchain_community.graphs.graph_document import GraphDocument, Node, Relationship
from langchain_core.documents import Document
from langchain_core.language_models import BaseLanguageModel
from langchain_core.messages import SystemMessage
from langchain_core.output_parsers import JsonOutputParser
from langchain_core.prompts import (
    ChatPromptTemplate,
    HumanMessagePromptTemplate,
    PromptTemplate,
)
from langchain_core.runnables import RunnableConfig
from pydantic import BaseModel, Field, create_model

examples = [
    {
        "text": (
            "Adam is a software engineer in Microsoft since 2009, "
            "and last year he got an award as the Best Talent"
        ),
        "head": "Adam",
        "head_type": "Person",
        "relation": "WORKS_FOR",
        "tail": "Microsoft",
        "tail_type": "Company",
    },
    {
        "text": (
            "Adam is a software engineer in Microsoft since 2009, "
            "and last year he got an award as the Best Talent"
        ),
        "head": "Adam",
        "head_type": "Person",
        "relation": "HAS_AWARD",
        "tail": "Best Talent",
        "tail_type": "Award",
    },
    {
        "text": (
            "Microsoft is a tech company that provide "
            "several products such as Microsoft Word"
        ),
        "head": "Microsoft Word",
        "head_type": "Product",
        "relation": "PRODUCED_BY",
        "tail": "Microsoft",
        "tail_type": "Company",
    },
    {
        "text": "Microsoft Word is a lightweight app that accessible offline",
        "head": "Microsoft Word",
        "head_type": "Product",
        "relation": "HAS_CHARACTERISTIC",
        "tail": "lightweight app",
        "tail_type": "Characteristic",
    },
    {
        "text": "Microsoft Word is a lightweight app that accessible offline",
        "head": "Microsoft Word",
        "head_type": "Product",
        "relation": "HAS_CHARACTERISTIC",
        "tail": "accessible offline",
        "tail_type": "Characteristic",
    },
]

system_prompt = (
    "# Knowledge Graph Instructions for GPT-4\n"
    "## 1. Overview\n"
    "You are a top-tier algorithm designed for extracting information in structured "
    "formats to build a knowledge graph.\n"
    "Try to capture as much information from the text as possible without "
    "sacrificing accuracy. Do not add any information that is not explicitly "
    "mentioned in the text.\n"
    "- **Nodes** represent entities and concepts.\n"
    "- The aim is to achieve simplicity and clarity in the knowledge graph, making it\n"
    "accessible for a vast audience.\n"
    "## 2. Labeling Nodes\n"
    "- **Consistency**: Ensure you use available types for node labels.\n"
    "Ensure you use basic or elementary types for node labels.\n"
    "- For example, when you identify an entity representing a person, "
    "always label it as **'person'**. Avoid using more specific terms "
    "like 'mathematician' or 'scientist'."
    "- **Node IDs**: Never utilize integers as node IDs. Node IDs should be "
    "names or human-readable identifiers found in the text.\n"
    "- **Relationships** represent connections between entities or concepts.\n"
    "Ensure consistency and generality in relationship types when constructing "
    "knowledge graphs. Instead of using specific and momentary types "
    "such as 'BECAME_PROFESSOR', use more general and timeless relationship types "
    "like 'PROFESSOR'. Make sure to use general and timeless relationship types!\n"
    "## 3. Coreference Resolution\n"
    "- **Maintain Entity Consistency**: When extracting entities, it's vital to "
    "ensure consistency.\n"
    'If an entity, such as "John Doe", is mentioned multiple times in the text '
    'but is referred to by different names or pronouns (e.g., "Joe", "he"),'
    "always use the most complete identifier for that entity throughout the "
    'knowledge graph. In this example, use "John Doe" as the entity ID.\n'
    "Remember, the knowledge graph should be coherent and easily understandable, "
    "so maintaining consistency in entity references is crucial.\n"
    "## 4. Strict Compliance\n"
    "Adhere to the rules strictly. Non-compliance will result in termination."
)

default_prompt = ChatPromptTemplate.from_messages(
    [
        (
            "system",
            system_prompt,
        ),
        (
            "human",
            (
                "Tip: Make sure to answer in the correct format and do "
                "not include any explanations. "
                "Use the given format to extract information from the "
                "following input: {input}"
            ),
        ),
    ]
)


def _get_additional_info(input_type: str) -> str:
    # Check if the input_type is one of the allowed values
    if input_type not in ["node", "relationship", "property"]:
        raise ValueError("input_type must be 'node', 'relationship', or 'property'")

    # Perform actions based on the input_type
    if input_type == "node":
        return (
            "Ensure you use basic or elementary types for node labels.\n"
            "For example, when you identify an entity representing a person, "
            "always label it as **'Person'**. Avoid using more specific terms "
            "like 'Mathematician' or 'Scientist'"
        )
    elif input_type == "relationship":
        return (
            "Instead of using specific and momentary types such as "
            "'BECAME_PROFESSOR', use more general and timeless relationship types "
            "like 'PROFESSOR'. However, do not sacrifice any accuracy for generality"
        )
    elif input_type == "property":
        return ""
    return ""


def optional_enum_field(
    enum_values: Optional[List[str]] = None,
    description: str = "",
    input_type: str = "node",
    llm_type: Optional[str] = None,
    **field_kwargs: Any,
) -> Any:
    """Utility function to conditionally create a field with an enum constraint."""
    # Only openai supports enum param
    if enum_values and llm_type == "openai-chat":
        return Field(
            ...,
            enum=enum_values,  # type: ignore[call-arg]
            description=f"{description}. Available options are {enum_values}",
            **field_kwargs,
        )
    elif enum_values:
        return Field(
            ...,
            description=f"{description}. Available options are {enum_values}",
            **field_kwargs,
        )
    else:
        additional_info = _get_additional_info(input_type)
        return Field(..., description=description + additional_info, **field_kwargs)


class _Graph(BaseModel):
    nodes: Optional[List]
    relationships: Optional[List]


class UnstructuredRelation(BaseModel):
    head: str = Field(
        description=(
            "extracted head entity like Microsoft, Apple, John. "
            "Must use human-readable unique identifier."
        )
    )
    head_type: str = Field(
        description="type of the extracted head entity like Person, Company, etc"
    )
    relation: str = Field(description="relation between the head and the tail entities")
    tail: str = Field(
        description=(
            "extracted tail entity like Microsoft, Apple, John. "
            "Must use human-readable unique identifier."
        )
    )
    tail_type: str = Field(
        description="type of the extracted tail entity like Person, Company, etc"
    )


def create_unstructured_prompt(
    node_labels: Optional[List[str]] = None, rel_types: Optional[List[str]] = None
) -> ChatPromptTemplate:
    node_labels_str = str(node_labels) if node_labels else ""
    rel_types_str = str(rel_types) if rel_types else ""
    base_string_parts = [
        "You are a top-tier algorithm designed for extracting information in "
        "structured formats to build a knowledge graph. Your task is to identify "
        "the entities and relations requested with the user prompt from a given "
        "text. You must generate the output in a JSON format containing a list "
        'with JSON objects. Each object should have the keys: "head", '
        '"head_type", "relation", "tail", and "tail_type". The "head" '
        "key must contain the text of the extracted entity with one of the types "
        "from the provided list in the user prompt.",
        f'The "head_type" key must contain the type of the extracted head entity, '
        f"which must be one of the types from {node_labels_str}."
        if node_labels
        else "",
        f'The "relation" key must contain the type of relation between the "head" '
        f'and the "tail", which must be one of the relations from {rel_types_str}.'
        if rel_types
        else "",
        f'The "tail" key must represent the text of an extracted entity which is '
        f'the tail of the relation, and the "tail_type" key must contain the type '
        f"of the tail entity from {node_labels_str}."
        if node_labels
        else "",
        "Attempt to extract as many entities and relations as you can. Maintain "
        "Entity Consistency: When extracting entities, it's vital to ensure "
        'consistency. If an entity, such as "John Doe", is mentioned multiple '
        "times in the text but is referred to by different names or pronouns "
        '(e.g., "Joe", "he"), always use the most complete identifier for '
        "that entity. The knowledge graph should be coherent and easily "
        "understandable, so maintaining consistency in entity references is "
        "crucial.",
        "IMPORTANT NOTES:\n- Don't add any explanation and text.",
    ]
    system_prompt = "\n".join(filter(None, base_string_parts))

    system_message = SystemMessage(content=system_prompt)
    parser = JsonOutputParser(pydantic_object=UnstructuredRelation)

    human_string_parts = [
        "Based on the following example, extract entities and "
        "relations from the provided text.\n\n",
        "Use the following entity types, don't use other entity "
        "that is not defined below:"
        "# ENTITY TYPES:"
        "{node_labels}"
        if node_labels
        else "",
        "Use the following relation types, don't use other relation "
        "that is not defined below:"
        "# RELATION TYPES:"
        "{rel_types}"
        if rel_types
        else "",
        "Below are a number of examples of text and their extracted "
        "entities and relationships."
        "{examples}\n"
        "For the following text, extract entities and relations as "
        "in the provided example."
        "{format_instructions}\nText: {input}",
    ]
    human_prompt_string = "\n".join(filter(None, human_string_parts))
    human_prompt = PromptTemplate(
        template=human_prompt_string,
        input_variables=["input"],
        partial_variables={
            "format_instructions": parser.get_format_instructions(),
            "node_labels": node_labels,
            "rel_types": rel_types,
            "examples": examples,
        },
    )

    human_message_prompt = HumanMessagePromptTemplate(prompt=human_prompt)

    chat_prompt = ChatPromptTemplate.from_messages(
        [system_message, human_message_prompt]
    )
    return chat_prompt


def create_simple_model(
    node_labels: Optional[List[str]] = None,
    rel_types: Optional[List[str]] = None,
    node_properties: Union[bool, List[str]] = False,
    llm_type: Optional[str] = None,
    relationship_properties: Union[bool, List[str]] = False,
) -> Type[_Graph]:
    """
    Create a simple graph model with optional constraints on node
    and relationship types.

    Args:
        node_labels (Optional[List[str]]): Specifies the allowed node types.
            Defaults to None, allowing all node types.
        rel_types (Optional[List[str]]): Specifies the allowed relationship types.
            Defaults to None, allowing all relationship types.
        node_properties (Union[bool, List[str]]): Specifies if node properties should
            be included. If a list is provided, only properties with keys in the list
            will be included. If True, all properties are included. Defaults to False.
        relationship_properties (Union[bool, List[str]]): Specifies if relationship
            properties should be included. If a list is provided, only properties with
            keys in the list will be included. If True, all properties are included.
            Defaults to False.
        llm_type (Optional[str]): The type of the language model. Defaults to None.
            Only openai supports enum param: openai-chat.

    Returns:
        Type[_Graph]: A graph model with the specified constraints.

    Raises:
        ValueError: If 'id' is included in the node or relationship properties list.
    """

    node_fields: Dict[str, Tuple[Any, Any]] = {
        "id": (
            str,
            Field(..., description="Name or human-readable unique identifier."),
        ),
        "type": (
            str,
            optional_enum_field(
                node_labels,
                description="The type or label of the node.",
                input_type="node",
                llm_type=llm_type,
            ),
        ),
    }

    if node_properties:
        if isinstance(node_properties, list) and "id" in node_properties:
            raise ValueError("The node property 'id' is reserved and cannot be used.")
        # Map True to empty array
        node_properties_mapped: List[str] = (
            [] if node_properties is True else node_properties
        )

        class Property(BaseModel):
            """A single property consisting of key and value"""

            key: str = optional_enum_field(
                node_properties_mapped,
                description="Property key.",
                input_type="property",
                llm_type=llm_type,
            )
            value: str = Field(..., description="value")

        node_fields["properties"] = (
            Optional[List[Property]],
            Field(None, description="List of node properties"),
        )
    SimpleNode = create_model("SimpleNode", **node_fields)  # type: ignore

    relationship_fields: Dict[str, Tuple[Any, Any]] = {
        "source_node_id": (
            str,
            Field(
                ...,
                description="Name or human-readable unique identifier of source node",
            ),
        ),
        "source_node_type": (
            str,
            optional_enum_field(
                node_labels,
                description="The type or label of the source node.",
                input_type="node",
                llm_type=llm_type,
            ),
        ),
        "target_node_id": (
            str,
            Field(
                ...,
                description="Name or human-readable unique identifier of target node",
            ),
        ),
        "target_node_type": (
            str,
            optional_enum_field(
                node_labels,
                description="The type or label of the target node.",
                input_type="node",
                llm_type=llm_type,
            ),
        ),
        "type": (
            str,
            optional_enum_field(
                rel_types,
                description="The type of the relationship.",
                input_type="relationship",
                llm_type=llm_type,
            ),
        ),
    }
    if relationship_properties:
        if (
            isinstance(relationship_properties, list)
            and "id" in relationship_properties
        ):
            raise ValueError(
                "The relationship property 'id' is reserved and cannot be used."
            )
        # Map True to empty array
        relationship_properties_mapped: List[str] = (
            [] if relationship_properties is True else relationship_properties
        )

        class RelationshipProperty(BaseModel):
            """A single property consisting of key and value"""

            key: str = optional_enum_field(
                relationship_properties_mapped,
                description="Property key.",
                input_type="property",
                llm_type=llm_type,
            )
            value: str = Field(..., description="value")

        relationship_fields["properties"] = (
            Optional[List[RelationshipProperty]],
            Field(None, description="List of relationship properties"),
        )
    SimpleRelationship = create_model("SimpleRelationship", **relationship_fields)  # type: ignore

    class DynamicGraph(_Graph):
        """Represents a graph document consisting of nodes and relationships."""

        nodes: Optional[List[SimpleNode]] = Field(description="List of nodes")  # type: ignore
        relationships: Optional[List[SimpleRelationship]] = Field(  # type: ignore
            description="List of relationships"
        )

    return DynamicGraph


def map_to_base_node(node: Any) -> Node:
    """Map the SimpleNode to the base Node."""
    properties = {}
    if hasattr(node, "properties") and node.properties:
        for p in node.properties:
            properties[format_property_key(p.key)] = p.value
    return Node(id=node.id, type=node.type, properties=properties)


def map_to_base_relationship(rel: Any) -> Relationship:
    """Map the SimpleRelationship to the base Relationship."""
    source = Node(id=rel.source_node_id, type=rel.source_node_type)
    target = Node(id=rel.target_node_id, type=rel.target_node_type)
    properties = {}
    if hasattr(rel, "properties") and rel.properties:
        for p in rel.properties:
            properties[format_property_key(p.key)] = p.value
    return Relationship(
        source=source, target=target, type=rel.type, properties=properties
    )


def _parse_and_clean_json(
    argument_json: Dict[str, Any],
) -> Tuple[List[Node], List[Relationship]]:
    nodes = []
    for node in argument_json["nodes"]:
        if not node.get("id"):  # Id is mandatory, skip this node
            continue
        node_properties = {}
        if "properties" in node and node["properties"]:
            for p in node["properties"]:
                node_properties[format_property_key(p["key"])] = p["value"]
        nodes.append(
            Node(
                id=node["id"],
                type=node.get("type", "Node"),
                properties=node_properties,
            )
        )
    relationships = []
    for rel in argument_json["relationships"]:
        # Mandatory props
        if (
            not rel.get("source_node_id")
            or not rel.get("target_node_id")
            or not rel.get("type")
        ):
            continue

        # Node type copying if needed from node list
        if not rel.get("source_node_type"):
            try:
                rel["source_node_type"] = [
                    el.get("type")
                    for el in argument_json["nodes"]
                    if el["id"] == rel["source_node_id"]
                ][0]
            except IndexError:
                rel["source_node_type"] = None
        if not rel.get("target_node_type"):
            try:
                rel["target_node_type"] = [
                    el.get("type")
                    for el in argument_json["nodes"]
                    if el["id"] == rel["target_node_id"]
                ][0]
            except IndexError:
                rel["target_node_type"] = None

        rel_properties = {}
        if "properties" in rel and rel["properties"]:
            for p in rel["properties"]:
                rel_properties[format_property_key(p["key"])] = p["value"]

        source_node = Node(
            id=rel["source_node_id"],
            type=rel["source_node_type"],
        )
        target_node = Node(
            id=rel["target_node_id"],
            type=rel["target_node_type"],
        )
        relationships.append(
            Relationship(
                source=source_node,
                target=target_node,
                type=rel["type"],
                properties=rel_properties,
            )
        )
    return nodes, relationships


def _format_nodes(nodes: List[Node]) -> List[Node]:
    return [
        Node(
            id=el.id.title() if isinstance(el.id, str) else el.id,
            type=el.type.capitalize()  # type: ignore[arg-type]
            if el.type
            else None,  # handle empty strings  # type: ignore[arg-type]
            properties=el.properties,
        )
        for el in nodes
    ]


def _format_relationships(rels: List[Relationship]) -> List[Relationship]:
    return [
        Relationship(
            source=_format_nodes([el.source])[0],
            target=_format_nodes([el.target])[0],
            type=el.type.replace(" ", "_").upper(),
            properties=el.properties,
        )
        for el in rels
    ]


def format_property_key(s: str) -> str:
    words = s.split()
    if not words:
        return s
    first_word = words[0].lower()
    capitalized_words = [word.capitalize() for word in words[1:]]
    return "".join([first_word] + capitalized_words)


def _convert_to_graph_document(
    raw_schema: Dict[Any, Any],
) -> Tuple[List[Node], List[Relationship]]:
    # If there are validation errors
    if not raw_schema["parsed"]:
        try:
            try:  # OpenAI type response
                argument_json = json.loads(
                    raw_schema["raw"].additional_kwargs["tool_calls"][0]["function"][
                        "arguments"
                    ]
                )
            except Exception:  # Google type response
                try:
                    argument_json = json.loads(
                        raw_schema["raw"].additional_kwargs["function_call"][
                            "arguments"
                        ]
                    )
                except Exception:  # Ollama type response
                    argument_json = raw_schema["raw"].tool_calls[0]["args"]
                    if isinstance(argument_json["nodes"], str):
                        argument_json["nodes"] = json.loads(argument_json["nodes"])
                    if isinstance(argument_json["relationships"], str):
                        argument_json["relationships"] = json.loads(
                            argument_json["relationships"]
                        )

            nodes, relationships = _parse_and_clean_json(argument_json)
        except Exception:  # If we can't parse JSON
            return ([], [])
    else:  # If there are no validation errors use parsed pydantic object
        parsed_schema: _Graph = raw_schema["parsed"]
        nodes = (
            [map_to_base_node(node) for node in parsed_schema.nodes if node.id]
            if parsed_schema.nodes
            else []
        )

        relationships = (
            [
                map_to_base_relationship(rel)
                for rel in parsed_schema.relationships
                if rel.type and rel.source_node_id and rel.target_node_id
            ]
            if parsed_schema.relationships
            else []
        )
    # Title / Capitalize
    return _format_nodes(nodes), _format_relationships(relationships)


class LLMGraphTransformer:
    """Transform documents into graph-based documents using a LLM.

    It allows specifying constraints on the types of nodes and relationships to include
    in the output graph. The class supports extracting properties for both nodes and
    relationships.

    Args:
        llm (BaseLanguageModel): An instance of a language model supporting structured
          output.
        allowed_nodes (List[str], optional): Specifies which node types are
          allowed in the graph. Defaults to an empty list, allowing all node types.
        allowed_relationships (List[str], optional): Specifies which relationship types
          are allowed in the graph. Defaults to an empty list, allowing all relationship
          types.
        prompt (Optional[ChatPromptTemplate], optional): The prompt to pass to
          the LLM with additional instructions.
        strict_mode (bool, optional): Determines whether the transformer should apply
          filtering to strictly adhere to `allowed_nodes` and `allowed_relationships`.
          Defaults to True.
        node_properties (Union[bool, List[str]]): If True, the LLM can extract any
          node properties from text. Alternatively, a list of valid properties can
          be provided for the LLM to extract, restricting extraction to those specified.
        relationship_properties (Union[bool, List[str]]): If True, the LLM can extract
          any relationship properties from text. Alternatively, a list of valid
          properties can be provided for the LLM to extract, restricting extraction to
          those specified.
        ignore_tool_usage (bool): Indicates whether the transformer should
          bypass the use of structured output functionality of the language model.
          If set to True, the transformer will not use the language model's native
          function calling capabilities to handle structured output. Defaults to False.

    Example:
        .. code-block:: python
            from langchain_experimental.graph_transformers import LLMGraphTransformer
            from langchain_core.documents import Document
            from langchain_openai import ChatOpenAI

            llm=ChatOpenAI(temperature=0)
            transformer = LLMGraphTransformer(
                llm=llm,
                allowed_nodes=["Person", "Organization"])

            doc = Document(page_content="Elon Musk is suing OpenAI")
            graph_documents = transformer.convert_to_graph_documents([doc])
    """

    def __init__(
        self,
        llm: BaseLanguageModel,
        allowed_nodes: List[str] = [],
        allowed_relationships: List[str] = [],
        prompt: Optional[ChatPromptTemplate] = None,
        strict_mode: bool = True,
        node_properties: Union[bool, List[str]] = False,
        relationship_properties: Union[bool, List[str]] = False,
        ignore_tool_usage: bool = False,
    ) -> None:
        self.allowed_nodes = allowed_nodes
        self.allowed_relationships = allowed_relationships
        self.strict_mode = strict_mode
        self._function_call = not ignore_tool_usage
        # Check if the LLM really supports structured output
        if self._function_call:
            try:
                llm.with_structured_output(_Graph)
            except NotImplementedError:
                self._function_call = False
        if not self._function_call:
            if node_properties or relationship_properties:
                raise ValueError(
                    "The 'node_properties' and 'relationship_properties' parameters "
                    "cannot be used in combination with a LLM that doesn't support "
                    "native function calling."
                )
            try:
                import json_repair  # type: ignore

                self.json_repair = json_repair
            except ImportError:
                raise ImportError(
                    "Could not import json_repair python package. "
                    "Please install it with `pip install json-repair`."
                )
            prompt = prompt or create_unstructured_prompt(
                allowed_nodes, allowed_relationships
            )
            self.chain = prompt | llm
        else:
            # Define chain
            try:
                llm_type = llm._llm_type  # type: ignore
            except AttributeError:
                llm_type = None
            schema = create_simple_model(
                allowed_nodes,
                allowed_relationships,
                node_properties,
                llm_type,
                relationship_properties,
            )
            structured_llm = llm.with_structured_output(schema, include_raw=True)
            prompt = prompt or default_prompt
            self.chain = prompt | structured_llm

    def process_response(
        self, document: Document, config: Optional[RunnableConfig] = None
    ) -> GraphDocument:
        """
        Processes a single document, transforming it into a graph document using
        an LLM based on the model's schema and constraints.
        """
        text = document.page_content
        raw_schema = self.chain.invoke({"input": text}, config=config)
        print(raw_schema)
        if self._function_call:
            raw_schema = cast(Dict[Any, Any], raw_schema)
            nodes, relationships = _convert_to_graph_document(raw_schema)
        else:
            nodes_set = set()
            relationships = []
            if not isinstance(raw_schema, str):
                raw_schema = raw_schema.content
            parsed_json = self.json_repair.loads(raw_schema)
            if isinstance(parsed_json, dict):
                parsed_json = [parsed_json]
            for rel in parsed_json:
                # Nodes need to be deduplicated using a set
                nodes_set.add((rel["head"], rel["head_type"]))
                nodes_set.add((rel["tail"], rel["tail_type"]))

                source_node = Node(id=rel["head"], type=rel["head_type"])
                target_node = Node(id=rel["tail"], type=rel["tail_type"])
                relationships.append(
                    Relationship(
                        source=source_node, target=target_node, type=rel["relation"]
                    )
                )
            # Create nodes list
            nodes = [Node(id=el[0], type=el[1]) for el in list(nodes_set)]

        # Strict mode filtering
        if self.strict_mode and (self.allowed_nodes or self.allowed_relationships):
            if self.allowed_nodes:
                lower_allowed_nodes = [el.lower() for el in self.allowed_nodes]
                nodes = [
                    node for node in nodes if node.type.lower() in lower_allowed_nodes
                ]
                relationships = [
                    rel
                    for rel in relationships
                    if rel.source.type.lower() in lower_allowed_nodes
                    and rel.target.type.lower() in lower_allowed_nodes
                ]
            if self.allowed_relationships:
                relationships = [
                    rel
                    for rel in relationships
                    if rel.type.lower()
                    in [el.lower() for el in self.allowed_relationships]
                ]

        return GraphDocument(nodes=nodes, relationships=relationships, source=document)

    def convert_to_graph_documents(
        self, documents: Sequence[Document], config: Optional[RunnableConfig] = None
    ) -> List[GraphDocument]:
        """Convert a sequence of documents into graph documents.

        Args:
            documents (Sequence[Document]): The original documents.
            kwargs: Additional keyword arguments.

        Returns:
            Sequence[GraphDocument]: The transformed documents as graphs.
        """
        return [self.process_response(document, config) for document in documents]

    async def aprocess_response(
        self, document: Document, config: Optional[RunnableConfig] = None
    ) -> GraphDocument:
        """
        Asynchronously processes a single document, transforming it into a
        graph document.
        """
        text = document.page_content
        raw_schema = await self.chain.ainvoke({"input": text}, config=config)
        raw_schema = cast(Dict[Any, Any], raw_schema)
        nodes, relationships = _convert_to_graph_document(raw_schema)

        if self.strict_mode and (self.allowed_nodes or self.allowed_relationships):
            if self.allowed_nodes:
                lower_allowed_nodes = [el.lower() for el in self.allowed_nodes]
                nodes = [
                    node for node in nodes if node.type.lower() in lower_allowed_nodes
                ]
                relationships = [
                    rel
                    for rel in relationships
                    if rel.source.type.lower() in lower_allowed_nodes
                    and rel.target.type.lower() in lower_allowed_nodes
                ]
            if self.allowed_relationships:
                relationships = [
                    rel
                    for rel in relationships
                    if rel.type.lower()
                    in [el.lower() for el in self.allowed_relationships]
                ]

        return GraphDocument(nodes=nodes, relationships=relationships, source=document)

    async def aconvert_to_graph_documents(
        self, documents: Sequence[Document], config: Optional[RunnableConfig] = None
    ) -> List[GraphDocument]:
        """
        Asynchronously convert a sequence of documents into graph documents.
        """
        tasks = [
            asyncio.create_task(self.aprocess_response(document, config))
            for document in documents
        ]
        results = await asyncio.gather(*tasks)
        return results

from langchain_core.documents import Document
from langchain_google_genai import ChatGoogleGenerativeAI

llm = ChatGoogleGenerativeAI(model="gemini-1.5-flash",temperature=0, api_key=API_KEY)
llm_transformer = LLMGraphTransformer(llm=llm)
document = [Document(page_content='Anna was born in Australia.')]
graph_document = llm_transformer.convert_to_graph_documents(document)

Error Message and Stack Trace (if applicable)

{'raw': AIMessage(content='', additional_kwargs={'function_call': {'name': 'DynamicGraph', 'arguments': '{"nodes": "\\n  \\"Anna\\"  \\"person\\"\\n  \\"Australia\\"  \\"country\\"\\n", "relationships": "\\n  \\"Anna\\"  \\"BORN_IN\\"  \\"Australia\\"\\n"}'}}, response_metadata={'prompt_feedback': {'block_reason': 0, 'safety_ratings': []}, 'finish_reason': 'STOP', 'safety_ratings': [{'category': 'HARM_CATEGORY_HATE_SPEECH', 'probability': 'NEGLIGIBLE', 'blocked': False}, {'category': 'HARM_CATEGORY_DANGEROUS_CONTENT', 'probability': 'NEGLIGIBLE', 'blocked': False}, {'category': 'HARM_CATEGORY_SEXUALLY_EXPLICIT', 'probability': 'NEGLIGIBLE', 'blocked': False}, {'category': 'HARM_CATEGORY_HARASSMENT', 'probability': 'NEGLIGIBLE', 'blocked': False}]}, id='run-fa87adb4-c6d8-4213-b0e3-117dadc72b37-0', tool_calls=[{'name': 'DynamicGraph', 'args': {'nodes': '\n  "Anna"  "person"\n  "Australia"  "country"\n', 'relationships': '\n  "Anna"  "BORN_IN"  "Australia"\n'}, 'id': '729bbfac-419c-47b9-a35b-fb33d6fda0f8', 'type': 'tool_call'}], usage_metadata={'input_tokens': 491, 'output_tokens': 52, 'total_tokens': 543}), 'parsing_error': 2 validation errors for DynamicGraph
nodes
  Input should be a valid list [type=list_type, input_value='\n  "Anna"  "person"\n  "Australia"  "country"\n', input_type=str]
    For further information visit https://errors.pydantic.dev/2.9/v/list_type
relationships
  Input should be a valid list [type=list_type, input_value='\n  "Anna"  "BORN_IN"  "Australia"\n', input_type=str]
    For further information visit https://errors.pydantic.dev/2.9/v/list_type, 'parsed': None}

Description

Hello, I've been trying to use LLMGraphTransformer with a model that is not from OpenAI, so I tried Google Gemini, however, I noticed that the result is always empty for nodes and relationships.
So, I added this print statement of the raw_schema to check what was the reply from the LLM and I receive this error, so it looks like no Node or Relationship is created because the arguments to the DynamicGraph function are expected to be lists, but they are currently strings.

System Info

System Information

OS: Darwin
OS Version: Darwin Kernel Version 23.1.0: Mon Oct 9 21:28:45 PDT 2023; root:xnu-10002.41.9~6/RELEASE_ARM64_T6020
Python Version: 3.10.6 (main, Sep 1 2024, 16:19:04) [Clang 15.0.0 (clang-1500.0.40.1)]

Package Information

langchain_core: 0.3.0
langchain: 0.3.0
langchain_community: 0.3.0
langsmith: 0.1.120
langchain_experimental: 0.3.0
langchain_google_genai: 2.0.0
langchain_ollama: 0.2.0
langchain_openai: 0.2.0
langchain_text_splitters: 0.3.0

Optional packages not installed

langgraph
langserve

Other Dependencies

aiohttp: 3.10.5
async-timeout: 4.0.3
dataclasses-json: 0.6.7
google-generativeai: 0.7.2
httpx: 0.27.2
jsonpatch: 1.33
numpy: 1.26.4
ollama: 0.3.3
openai: 1.45.0
orjson: 3.10.7
packaging: 24.1
pillow: 10.4.0
pydantic: 2.9.1
pydantic-settings: 2.5.2
PyYAML: 6.0.2
requests: 2.32.3
SQLAlchemy: 2.0.34
tenacity: 8.5.0
tiktoken: 0.7.0
typing-extensions: 4.12.2

@dosubot dosubot bot added Ɑ: core Related to langchain-core 🤖:bug Related to a bug, vulnerability, unexpected error with an existing feature labels Sep 18, 2024
@kritgrover
Copy link

Thank you for addressing this issue. Would it be possible to provide an implementation or example using an OpenAI model as a baseline? This could help in identifying whether the issue lies within the model integration or the data handling within Gemini.

@th-cds
Copy link
Author

th-cds commented Sep 30, 2024

Hello, sure! The module LLMGraphTransformer is the same, the only thing that changes is:

from langchain_core.documents import Document
from langchain_openai import ChatOpenAI

llm = ChatOpenAI(model_name='gpt-4o-mini',temperature=0, api_key=API_KEY)
llm_transformer = LLMGraphTransformer(llm=llm)
document = [Document(page_content='Anna was born in Australia.')]
graph_document = llm_transformer.convert_to_graph_documents(document)

@william-cox
Copy link

I am experiencing a similar issue. Here is the executed code:

llm = ChatGoogleGenerativeAI(model="gemini-pro", api_key=GEMINI_API_KEY)

llm_transformer = LLMGraphTransformer(llm=llm)

document = [Document(page_content='Anna was born in Australia.')]

graph_document = llm_transformer.convert_to_graph_documents(document)

And here is the error:

InvalidArgument                           Traceback (most recent call last)
File /opt/conda/lib/python3.10/site-packages/langchain_google_genai/chat_models.py:178, in _chat_with_retry.<locals>._chat_with_retry(**kwargs)
    177 try:
--> 178     return generation_method(**kwargs)
    179 # Do not retry for these errors.

File /opt/conda/lib/python3.10/site-packages/google/ai/generativelanguage_v1beta/services/generative_service/client.py:830, in GenerativeServiceClient.generate_content(self, request, model, contents, retry, timeout, metadata)
    829 # Send the request.
--> 830 response = rpc(
    831     request,
    832     retry=retry,
    833     timeout=timeout,
    834     metadata=metadata,
    835 )
    837 # Done; return the response.

File /opt/conda/lib/python3.10/site-packages/google/api_core/gapic_v1/method.py:131, in _GapicCallable.__call__(self, timeout, retry, compression, *args, **kwargs)
    129     kwargs["compression"] = compression
--> 131 return wrapped_func(*args, **kwargs)

File /opt/conda/lib/python3.10/site-packages/google/api_core/retry/retry_unary.py:293, in Retry.__call__.<locals>.retry_wrapped_func(*args, **kwargs)
    290 sleep_generator = exponential_sleep_generator(
    291     self._initial, self._maximum, multiplier=self._multiplier
    292 )
--> 293 return retry_target(
    294     target,
    295     self._predicate,
    296     sleep_generator,
    297     timeout=self._timeout,
    298     on_error=on_error,
    299 )

File /opt/conda/lib/python3.10/site-packages/google/api_core/retry/retry_unary.py:153, in retry_target(target, predicate, sleep_generator, timeout, on_error, exception_factory, **kwargs)
    151 except Exception as exc:
    152     # defer to shared logic for handling errors
--> 153     _retry_error_helper(
    154         exc,
    155         deadline,
    156         sleep,
    157         error_list,
    158         predicate,
    159         on_error,
    160         exception_factory,
    161         timeout,
    162     )
    163     # if exception not raised, sleep before next attempt

File /opt/conda/lib/python3.10/site-packages/google/api_core/retry/retry_base.py:212, in _retry_error_helper(exc, deadline, next_sleep, error_list, predicate_fn, on_error_fn, exc_factory_fn, original_timeout)
    207     final_exc, source_exc = exc_factory_fn(
    208         error_list,
    209         RetryFailureReason.NON_RETRYABLE_ERROR,
    210         original_timeout,
    211     )
--> 212     raise final_exc from source_exc
    213 if on_error_fn is not None:

File /opt/conda/lib/python3.10/site-packages/google/api_core/retry/retry_unary.py:144, in retry_target(target, predicate, sleep_generator, timeout, on_error, exception_factory, **kwargs)
    143 try:
--> 144     result = target()
    145     if inspect.isawaitable(result):

File /opt/conda/lib/python3.10/site-packages/google/api_core/timeout.py:120, in TimeToDeadlineTimeout.__call__.<locals>.func_with_timeout(*args, **kwargs)
    118     kwargs["timeout"] = max(0, self._timeout - time_since_first_attempt)
--> 120 return func(*args, **kwargs)

File /opt/conda/lib/python3.10/site-packages/google/api_core/grpc_helpers.py:78, in _wrap_unary_errors.<locals>.error_remapped_callable(*args, **kwargs)
     77 except grpc.RpcError as exc:
---> 78     raise exceptions.from_grpc_error(exc) from exc

InvalidArgument: 400 * GenerateContentRequest.tools[0].function_declarations[0].parameters.properties[nodes].items: missing field.
* GenerateContentRequest.tools[0].function_declarations[0].parameters.properties[relationships].items: missing field.


The above exception was the direct cause of the following exception:

ChatGoogleGenerativeAIError               Traceback (most recent call last)
Cell In[59], line 4
      2 llm_transformer = LLMGraphTransformer(llm=llm)
      3 document = [Document(page_content='Anna was born in Australia.')]
----> 4 graph_document = llm_transformer.convert_to_graph_documents(document)

File /opt/conda/lib/python3.10/site-packages/langchain_experimental/graph_transformers/llm.py:923, in LLMGraphTransformer.convert_to_graph_documents(self, documents, config)
    911 def convert_to_graph_documents(
    912     self, documents: Sequence[Document], config: Optional[RunnableConfig] = None
    913 ) -> List[GraphDocument]:
    914     """Convert a sequence of documents into graph documents.
    915 
    916     Args:
   (...)
    921         Sequence[GraphDocument]: The transformed documents as graphs.
    922     """
--> 923     return [self.process_response(document, config) for document in documents]

File /opt/conda/lib/python3.10/site-packages/langchain_experimental/graph_transformers/llm.py:923, in <listcomp>(.0)
    911 def convert_to_graph_documents(
    912     self, documents: Sequence[Document], config: Optional[RunnableConfig] = None
    913 ) -> List[GraphDocument]:
    914     """Convert a sequence of documents into graph documents.
    915 
    916     Args:
   (...)
    921         Sequence[GraphDocument]: The transformed documents as graphs.
    922     """
--> 923     return [self.process_response(document, config) for document in documents]

File /opt/conda/lib/python3.10/site-packages/langchain_experimental/graph_transformers/llm.py:830, in LLMGraphTransformer.process_response(self, document, config)
    825 """
    826 Processes a single document, transforming it into a graph document using
    827 an LLM based on the model's schema and constraints.
    828 """
    829 text = document.page_content
--> 830 raw_schema = self.chain.invoke({"input": text}, config=config)
    831 if self._function_call:
    832     raw_schema = cast(Dict[Any, Any], raw_schema)

File /opt/conda/lib/python3.10/site-packages/langchain_core/runnables/base.py:3024, in RunnableSequence.invoke(self, input, config, **kwargs)
   3022             input = context.run(step.invoke, input, config, **kwargs)
   3023         else:
-> 3024             input = context.run(step.invoke, input, config)
   3025 # finish the root run
   3026 except BaseException as e:

File /opt/conda/lib/python3.10/site-packages/langchain_core/runnables/base.py:3727, in RunnableParallel.invoke(self, input, config, **kwargs)
   3722     with get_executor_for_config(config) as executor:
   3723         futures = [
   3724             executor.submit(_invoke_step, step, input, config, key)
   3725             for key, step in steps.items()
   3726         ]
-> 3727         output = {key: future.result() for key, future in zip(steps, futures)}
   3728 # finish the root run
   3729 except BaseException as e:

File /opt/conda/lib/python3.10/site-packages/langchain_core/runnables/base.py:3727, in <dictcomp>(.0)
   3722     with get_executor_for_config(config) as executor:
   3723         futures = [
   3724             executor.submit(_invoke_step, step, input, config, key)
   3725             for key, step in steps.items()
   3726         ]
-> 3727         output = {key: future.result() for key, future in zip(steps, futures)}
   3728 # finish the root run
   3729 except BaseException as e:

File /opt/conda/lib/python3.10/concurrent/futures/_base.py:458, in Future.result(self, timeout)
    456     raise CancelledError()
    457 elif self._state == FINISHED:
--> 458     return self.__get_result()
    459 else:
    460     raise TimeoutError()

File /opt/conda/lib/python3.10/concurrent/futures/_base.py:403, in Future.__get_result(self)
    401 if self._exception:
    402     try:
--> 403         raise self._exception
    404     finally:
    405         # Break a reference cycle with the exception in self._exception
    406         self = None

File /opt/conda/lib/python3.10/concurrent/futures/thread.py:58, in _WorkItem.run(self)
     55     return
     57 try:
---> 58     result = self.fn(*self.args, **self.kwargs)
     59 except BaseException as exc:
     60     self.future.set_exception(exc)

File /opt/conda/lib/python3.10/site-packages/langchain_core/runnables/base.py:3711, in RunnableParallel.invoke.<locals>._invoke_step(step, input, config, key)
   3709 context = copy_context()
   3710 context.run(_set_config_context, child_config)
-> 3711 return context.run(
   3712     step.invoke,
   3713     input,
   3714     child_config,
   3715 )

File /opt/conda/lib/python3.10/site-packages/langchain_core/runnables/base.py:5354, in RunnableBindingBase.invoke(self, input, config, **kwargs)
   5348 def invoke(
   5349     self,
   5350     input: Input,
   5351     config: Optional[RunnableConfig] = None,
   5352     **kwargs: Optional[Any],
   5353 ) -> Output:
-> 5354     return self.bound.invoke(
   5355         input,
   5356         self._merge_configs(config),
   5357         **{**self.kwargs, **kwargs},
   5358     )

File /opt/conda/lib/python3.10/site-packages/langchain_core/language_models/chat_models.py:286, in BaseChatModel.invoke(self, input, config, stop, **kwargs)
    275 def invoke(
    276     self,
    277     input: LanguageModelInput,
   (...)
    281     **kwargs: Any,
    282 ) -> BaseMessage:
    283     config = ensure_config(config)
    284     return cast(
    285         ChatGeneration,
--> 286         self.generate_prompt(
    287             [self._convert_input(input)],
    288             stop=stop,
    289             callbacks=config.get("callbacks"),
    290             tags=config.get("tags"),
    291             metadata=config.get("metadata"),
    292             run_name=config.get("run_name"),
    293             run_id=config.pop("run_id", None),
    294             **kwargs,
    295         ).generations[0][0],
    296     ).message

File /opt/conda/lib/python3.10/site-packages/langchain_core/language_models/chat_models.py:786, in BaseChatModel.generate_prompt(self, prompts, stop, callbacks, **kwargs)
    778 def generate_prompt(
    779     self,
    780     prompts: list[PromptValue],
   (...)
    783     **kwargs: Any,
    784 ) -> LLMResult:
    785     prompt_messages = [p.to_messages() for p in prompts]
--> 786     return self.generate(prompt_messages, stop=stop, callbacks=callbacks, **kwargs)

File /opt/conda/lib/python3.10/site-packages/langchain_core/language_models/chat_models.py:643, in BaseChatModel.generate(self, messages, stop, callbacks, tags, metadata, run_name, run_id, **kwargs)
    641         if run_managers:
    642             run_managers[i].on_llm_error(e, response=LLMResult(generations=[]))
--> 643         raise e
    644 flattened_outputs = [
    645     LLMResult(generations=[res.generations], llm_output=res.llm_output)  # type: ignore[list-item]
    646     for res in results
    647 ]
    648 llm_output = self._combine_llm_outputs([res.llm_output for res in results])

File /opt/conda/lib/python3.10/site-packages/langchain_core/language_models/chat_models.py:633, in BaseChatModel.generate(self, messages, stop, callbacks, tags, metadata, run_name, run_id, **kwargs)
    630 for i, m in enumerate(messages):
    631     try:
    632         results.append(
--> 633             self._generate_with_cache(
    634                 m,
    635                 stop=stop,
    636                 run_manager=run_managers[i] if run_managers else None,
    637                 **kwargs,
    638             )
    639         )
    640     except BaseException as e:
    641         if run_managers:

File /opt/conda/lib/python3.10/site-packages/langchain_core/language_models/chat_models.py:851, in BaseChatModel._generate_with_cache(self, messages, stop, run_manager, **kwargs)
    849 else:
    850     if inspect.signature(self._generate).parameters.get("run_manager"):
--> 851         result = self._generate(
    852             messages, stop=stop, run_manager=run_manager, **kwargs
    853         )
    854     else:
    855         result = self._generate(messages, stop=stop, **kwargs)

File /opt/conda/lib/python3.10/site-packages/langchain_google_genai/chat_models.py:946, in ChatGoogleGenerativeAI._generate(self, messages, stop, run_manager, tools, functions, safety_settings, tool_config, generation_config, cached_content, tool_choice, **kwargs)
    920 def _generate(
    921     self,
    922     messages: List[BaseMessage],
   (...)
    933     **kwargs: Any,
    934 ) -> ChatResult:
    935     request = self._prepare_request(
    936         messages,
    937         stop=stop,
   (...)
    944         tool_choice=tool_choice,
    945     )
--> 946     response: GenerateContentResponse = _chat_with_retry(
    947         request=request,
    948         **kwargs,
    949         generation_method=self.client.generate_content,
    950         metadata=self.default_metadata,
    951     )
    952     return _response_to_result(response)

File /opt/conda/lib/python3.10/site-packages/langchain_google_genai/chat_models.py:196, in _chat_with_retry(generation_method, **kwargs)
    193     except Exception as e:
    194         raise e
--> 196 return _chat_with_retry(**kwargs)

File /opt/conda/lib/python3.10/site-packages/tenacity/__init__.py:336, in BaseRetrying.wraps.<locals>.wrapped_f(*args, **kw)
    334 copy = self.copy()
    335 wrapped_f.statistics = copy.statistics  # type: ignore[attr-defined]
--> 336 return copy(f, *args, **kw)

File /opt/conda/lib/python3.10/site-packages/tenacity/__init__.py:475, in Retrying.__call__(self, fn, *args, **kwargs)
    473 retry_state = RetryCallState(retry_object=self, fn=fn, args=args, kwargs=kwargs)
    474 while True:
--> 475     do = self.iter(retry_state=retry_state)
    476     if isinstance(do, DoAttempt):
    477         try:

File /opt/conda/lib/python3.10/site-packages/tenacity/__init__.py:376, in BaseRetrying.iter(self, retry_state)
    374 result = None
    375 for action in self.iter_state.actions:
--> 376     result = action(retry_state)
    377 return result

File /opt/conda/lib/python3.10/site-packages/tenacity/__init__.py:398, in BaseRetrying._post_retry_check_actions.<locals>.<lambda>(rs)
    396 def _post_retry_check_actions(self, retry_state: "RetryCallState") -> None:
    397     if not (self.iter_state.is_explicit_retry or self.iter_state.retry_run_result):
--> 398         self._add_action_func(lambda rs: rs.outcome.result())
    399         return
    401     if self.after is not None:

File /opt/conda/lib/python3.10/concurrent/futures/_base.py:451, in Future.result(self, timeout)
    449     raise CancelledError()
    450 elif self._state == FINISHED:
--> 451     return self.__get_result()
    453 self._condition.wait(timeout)
    455 if self._state in [CANCELLED, CANCELLED_AND_NOTIFIED]:

File /opt/conda/lib/python3.10/concurrent/futures/_base.py:403, in Future.__get_result(self)
    401 if self._exception:
    402     try:
--> 403         raise self._exception
    404     finally:
    405         # Break a reference cycle with the exception in self._exception
    406         self = None

File /opt/conda/lib/python3.10/site-packages/tenacity/__init__.py:478, in Retrying.__call__(self, fn, *args, **kwargs)
    476 if isinstance(do, DoAttempt):
    477     try:
--> 478         result = fn(*args, **kwargs)
    479     except BaseException:  # noqa: B902
    480         retry_state.set_exception(sys.exc_info())  # type: ignore[arg-type]

File /opt/conda/lib/python3.10/site-packages/langchain_google_genai/chat_models.py:190, in _chat_with_retry.<locals>._chat_with_retry(**kwargs)
    187         raise ValueError(error_msg)
    189 except google.api_core.exceptions.InvalidArgument as e:
--> 190     raise ChatGoogleGenerativeAIError(
    191         f"Invalid argument provided to Gemini: {e}"
    192     ) from e
    193 except Exception as e:
    194     raise e

ChatGoogleGenerativeAIError: Invalid argument provided to Gemini: 400 * GenerateContentRequest.tools[0].function_declarations[0].parameters.properties[nodes].items: missing field.
* GenerateContentRequest.tools[0].function_declarations[0].parameters.properties[relationships].items: missing field. 

@arjun9689
Copy link

arjun9689 commented Nov 25, 2024

I am experiencing the same issue. Below is the code I am trying to execute:

from dotenv import load_dotenv
load_dotenv()
import os

from langchain_google_genai import ChatGoogleGenerativeAI, GoogleGenerativeAIEmbeddings
from langchain_experimental.graph_transformers import LLMGraphTransformer
import google.generativeai as genai

genai.configure(api_key=os.getenv("GOOGLE_API_KEY"))
llm = ChatGoogleGenerativeAI(model="gemini-1.5-pro")

text = """Marie Curie, born in 1867, was a Polish and naturalised-French physicist and chemist who conducted pioneering research on radioactivity.She was the first woman to win a Nobel Prize, the first person to win a Nobel Prize twice, and the only person to win a Nobel Prize in two scientific fields.Her husband, Pierre Curie, was a co-winner of her first Nobel Prize, making them the first-ever married couple to win the Nobel Prize and launching the Curie family legacy of five Nobel Prizes.She was, in 1906, the first woman to become a professor at the University of Paris."""

from langchain_core.documents import Document
documents = [Document(page_content=text)]
llm_transformer = LLMGraphTransformer(llm=llm)
graph_documents = llm_transformer.convert_to_graph_documents(documents)

Below is the error I am getting:

ChatGoogleGenerativeAIError: Invalid argument provided to Gemini: 400 * GenerateContentRequest.tools[0].function_declarations[0].parameters.properties[relationships].items: missing field.
* GenerateContentRequest.tools[0].function_declarations[0].parameters.properties[nodes].items: missing field.

I have also logged this here - issue 661

@marfago
Copy link

marfago commented Dec 7, 2024

It seems that the Optional[List] is not supported (Gemini is complaining because of a type=null). Try to remove it as follows:

class DynamicGraph(_Graph):
        """Represents a graph document consisting of nodes and relationships."""

        nodes: List[SimpleNode] = Field(description="List of nodes")  # type: ignore
        relationships: List[SimpleRelationship] = Field(  # type: ignore
            description="List of relationships"
        )

Unfortunately it may cause a failure if the list of nodes/relationships is empty.

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
🤖:bug Related to a bug, vulnerability, unexpected error with an existing feature Ɑ: core Related to langchain-core
Projects
None yet
Development

No branches or pull requests

5 participants