You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
| NumberEmissivity |`\int \frac{1}{h \nu} j_{\nu} d\Omega d\nu`| Total number emissivity |`cm^{-3} s^{-1}`|
20
-
| ThermalDistributionOfTNu |`B_{\nu} = \frac{dE}{dA dt d\Omega d\nu}`| Specific intensity of thermal distribution |`erg cm^{-2} s^{-1} Sr^{-1} Hz^{-1}`|
21
-
| DThermalDistributionOfTNuDT |`dB_{\nu}/dT`| Temperature derivative of specific intensity of thermal distribution |`erg cm^{-2} s^{-1} Sr^{-1} Hz^{-1} K^{-1}`|
22
-
| ThermalDistributionOfT |`B = \int B_{\nu} d\Omega d\nu`| Frequency- and angle-integrated intensity of thermal distribution |`erg cm^{-2} s^{-1}`|
23
-
| ThermalNumberDistributionOfT |`B = \int \frac{1}{h \nu} B_{\nu} d\Omega d\nu`| Frequency- and angle-integrated intensity of thermal distribution |`erg cm^{-2} s^{-1}`|
| NumberEmissivity |$\int \frac{1}{h \nu} j_{\nu} d\Omega d\nu$| Total number emissivity |${\rm cm}^{-3} {\rm s}^{-1}$|
20
+
| ThermalDistributionOfTNu |$B_{\nu} = \frac{dE}{dA dt d\Omega d\nu}$| Specific intensity of thermal distribution |${\rm erg~cm}^{-2} {\rm s}^{-1} {\rm Sr}^{-1} {\rm Hz}^{-1}$|
21
+
| DThermalDistributionOfTNuDT |$dB_{\nu}/dT$| Temperature derivative of specific intensity of thermal distribution |${\rm erg~cm}^{-2} {\rm s}^{-1} {\rm Sr}^{-1} {\rm Hz}^{-1} {\rm K}^{-1}$|
22
+
| ThermalDistributionOfT |$B = \int B_{\nu} d\Omega d\nu$| Frequency- and angle-integrated intensity of thermal distribution |${\rm erg~cm}^{-2} {\rm s}^{-1}$|
23
+
| ThermalNumberDistributionOfT |$B = \int \frac{1}{h \nu} B_{\nu} d\Omega d\nu$| Frequency- and angle-integrated intensity of thermal distribution |${\rm erg~cm}^{-2} {\rm s}^{-1}$|
24
24
25
25
Note that the thermal radiation energy density `u = 1/c ThermalDistributionOfT` and the thermal radiation number density `n = 1/c ThermalNumberDistributionOfT`.
26
26
27
-
Internally singularity-opac always uses CGS units, as in the above table. However, arbitrary units are supported through the units modifier.
27
+
Internally singularity-opac always uses CGS units, as in the above table. However, arbitrary units are supported through the units modifier, which accepts
28
+
function argument inputs in the arbitrary unit system, and returns the result from the function in those same arbitrary units.
0 commit comments