-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_functions.py
631 lines (518 loc) · 20.9 KB
/
train_functions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
"""
Performs all the model training functions:
1) Gets arg parse values
2) Loads datasets and transforms
3) Trains model using VGG19, Efficient Net, RegNet
4) Calculates train loss/accuracy and test loss/accuracy
5) Saves model as a checkpoint
6) User can set epochs, gpu/cpu, learn rate, hidden layers, save and data dir
7) User can select model VGG19, EfficientNet, or RegNet to train
"""
# Imports here
import torch
from torch import nn
from torch import optim
from torch.utils.data import DataLoader
from torchvision import datasets, transforms, models
from collections import OrderedDict
from matplotlib import pyplot as plt
import argparse
from torchinfo import summary
def args_parse():
"""
Arg Parse Parameters
- save_dir: is where the model is stored after training
- arch: model type (vgg19 or AlexNet)
- learning_rate: training learning rate
- epochs: number of epochs for training
- gpu: set to gpu (cuda) or cpu
"""
parser = argparse.ArgumentParser()
parser.add_argument("--save_dir", action="store", dest="save_dir",
default="saved_models/")
parser.add_argument('--data_dir', type=str, dest='data_dir', action="store", nargs="*", default="data")
parser.add_argument('--model', dest='model', default='vgg19',
choices=['efficientnet_v2', 'vgg19', 'regnet'])
parser.add_argument('--hidden_layers', type=int, dest='hidden_layers', default='2048')
parser.add_argument('--learn_rate', type=float, dest='learn_rate', default='0.00001')
parser.add_argument('--epochs', type=int, dest='epochs', default='10')
parser.add_argument('--gpu', dest='gpu', action="store_true", default=False)
return parser.parse_args()
def train_setup(model, epochs, gpu, learn_rate, hidden_layers, save_dir, data_dir):
"""
Train Setup Function
- sets up data transformer and loaders
- calls model to be trained (VGG19, EfficientNet, RegNet)
"""
train_dir = data_dir + '/train'
valid_dir = data_dir + '/valid'
test_dir = data_dir + '/test'
data_transforms = {
'train': transforms.Compose([
transforms.Resize(size=256),
transforms.CenterCrop(size=224),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406],
[0.229, 0.224, 0.225])
]),
'valid': transforms.Compose([
transforms.Resize(size=256),
transforms.CenterCrop(size=224),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406],
[0.229, 0.224, 0.225])
]),
'test': transforms.Compose([
transforms.Resize(size=256),
transforms.CenterCrop(size=224),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406],
[0.229, 0.224, 0.225])
])
}
image_datasets = {
'train': datasets.ImageFolder(train_dir, transform=data_transforms['train']),
'valid': datasets.ImageFolder(valid_dir, transform=data_transforms['valid']),
'test': datasets.ImageFolder(test_dir, transform=data_transforms['test'])
}
# set batch size so easy to adjust later
b_size = 64
train_loader = DataLoader(image_datasets['train'], batch_size=b_size, shuffle=True)
# valid_loader = DataLoader(image_datasets['valid'], batch_size=b_size)
test_loader = DataLoader(image_datasets['test'], batch_size=b_size)
# Call Training Model (saves model at end of training)
if model == 'efficientnet_v2':
model_e_net(epochs, learn_rate, train_loader, test_loader,
image_datasets, gpu, hidden_layers, save_dir, b_size)
if model == 'vgg19':
model_vgg(epochs, learn_rate, train_loader, test_loader,
image_datasets, gpu, hidden_layers, save_dir, b_size)
if model == 'regnet':
model_regnet(epochs, learn_rate, train_loader, test_loader,
image_datasets, gpu, hidden_layers, save_dir, b_size)
return model, save_dir
def model_vgg(epochs, learn_rate, train_loader, test_loader, image_datasets, gpu, hidden_layers, save_dir, b_size):
"""
VGG19 Model function
:param epochs: configurable from command line
:param learn_rate: configurable from command line
:param train_loader:
:param test_loader:
:param image_datasets: train, test and valid datasets
:param gpu: cpu or gpu if available
:param hidden_layers: configurable from command line
:param save_dir: saved model location (configurable from command line)
:param b_size: batch size
:return:
"""
# Set for torchvision v0.13+ (for earlier versions use "pre-trained")
model = models.vgg19(weights='VGG19_Weights.DEFAULT')
# Freeze the layers/parameters in the model
for param in model.parameters():
param.requires_grad = False
"""
Create new classifier:
- in_features 25088
- hidden_layers are configurable (default=4096)
- dropout = .45
- out_features = 2
"""
classifier = nn.Sequential(OrderedDict([
('fc1', nn.Linear(25088, hidden_layers)),
('relu1', nn.ReLU()),
('dropout1', nn.Dropout(p=0.4)),
('output', nn.Linear(hidden_layers, 2)),
]))
# Replace classifier with new classifier
model.classifier = classifier
model_sum = summary(model, input_size=(b_size, 3, 224, 224),
verbose=0,
col_names=["input_size", "output_size", "num_params", "trainable"],
col_width=20,
row_settings=["var_names"])
# check the model set up
print("============================================= VGG19 Model ==========================================")
print("====================================== Weights=VGG19_Weights.DEFAULT =================================")
print(f"Epochs = {epochs} Learn Rate = {learn_rate} Hidden Layers = {hidden_layers} Batch Size = {b_size}")
print("======================================================================================================")
print("")
print(model_sum)
# Define loss and optimizer, lear_rate is configurable
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.classifier.parameters(), lr=learn_rate)
# Call train_model function
train_model(model, epochs, criterion, optimizer, train_loader,
test_loader, image_datasets, gpu, save_dir)
return
def model_e_net(epochs, learn_rate, train_loader, test_loader, image_datasets, gpu, hidden_layers, save_dir, b_size):
"""
EfficientNet Model function
:param epochs:
:param learn_rate:
:param train_loader:
:param test_loader:
:param image_datasets:
:param gpu:
:param hidden_layers:
:param save_dir:
:param b_size:
:return:
"""
# Set for torchvision v0.13+ (for earlier versions use "pre-trained")
model = models.efficientnet_v2_l(weights='EfficientNet_V2_L_Weights.DEFAULT')
# print(model)
# Freeze the layers/parameters in the model
for param in model.parameters():
param.requires_grad = False
"""
Create new classifier:
- in_features 25088
- hidden_layers are configurable (default=4096)
- dropout = .5
- out_features = 2
(classifier): Sequential(
(0): Dropout(p=0.45, inplace=True)
(1): Linear(in_features=1280, out_features=1000, bias=True)
"""
classifier = nn.Sequential(OrderedDict([
('fc1', nn.Linear(1280, hidden_layers)),
('relu1', nn.ReLU()),
('dropout1', nn.Dropout(p=0.45)),
('output', nn.Linear(hidden_layers, 2)),
]))
# Replace classifier with new classifier
model.classifier = classifier
model_sum = summary(model, input_size=(b_size, 3, 224, 224),
verbose=0,
col_names=["input_size", "output_size", "num_params", "trainable"],
col_width=20,
row_settings=["var_names"])
# check the model set up
print("========================================= EfficientNet Model =======================================")
print("================================ Weights=EfficientNet_V2_L_Weights.DEFAULT ===========================")
print(f"Epochs = {epochs} Learn Rate = {learn_rate} Hidden Layers = {hidden_layers} Batch Size = {b_size}")
print("======================================================================================================")
print("")
print(model_sum)
# Define loss and optimizer, lear_rate is configurable (default=.001)
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.classifier.parameters(), lr=learn_rate)
# Call train_model function
train_model(model, epochs, criterion, optimizer, train_loader,
test_loader, image_datasets, gpu, save_dir)
return
def model_regnet(epochs, learn_rate, train_loader, test_loader, image_datasets, gpu, hidden_layers, save_dir, b_size):
"""
RegNet Model function
:param epochs:
:param learn_rate:
:param train_loader:
:param test_loader:
:param image_datasets:
:param gpu:
:param hidden_layers:
:param save_dir:
:param b_size:
:return:
"""
# Set for torchvision v0.13+ (for earlier versions use "pre-trained")
model = models.regnet_y_16gf(weights='RegNet_Y_16GF_Weights.DEFAULT')
# Freeze the layers/parameters in the model
for param in model.parameters():
param.requires_grad = False
"""
Create new classifier (fc):
- in_features 3024
- hidden_layers are configurable
- dropout = .5
- out_features = 2
"""
fc = nn.Sequential(OrderedDict([
('fc', nn.Linear(3024, hidden_layers)),
('relu1', nn.ReLU()),
('dropout1', nn.Dropout(p=0.4)),
('output', nn.Linear(hidden_layers, 2)),
]))
# Replace classifier with new classifier
model.fc = fc
model_sum = summary(model, input_size=(b_size, 3, 224, 224),
verbose=0,
col_names=["input_size", "output_size", "num_params", "trainable"],
col_width=20,
row_settings=["var_names"])
# check the model set up
print("============================================= RegNet Model ===========================================")
print("====================================== Weights=regnet_y_16gf.DEFAULT =================================")
print(f"Epochs = {epochs} Learn Rate = {learn_rate} Hidden Layers = {hidden_layers} Batch Size = {b_size}")
print("======================================================================================================")
print("")
print(model_sum)
# Define loss and optimizer, lear_rate is configurable
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.fc.parameters(), lr=learn_rate)
# Call train_model function
train_model(model, epochs, criterion, optimizer, train_loader,
test_loader, image_datasets, gpu, save_dir)
return
def train_model(model, epochs, criterion, optimizer, train_loader,
test_loader, image_datasets, gpu, save_dir):
"""
Trains function, gets train and test loss and accuracy results for plotting
:param model: VGG19, RegNet, or EffecientNet
:param epochs: configurable from command line
:param criterion: loss function
:param optimizer: optimizer used
:param train_loader:
:param test_loader:
:param image_datasets:
:param gpu:
:param save_dir:
:return:
"""
# Create empty list to capture loss/accuracy values for all steps for plotting
train_loss_list = []
test_loss_list = []
train_acc_list = []
test_accuracy_list = []
print_every = 5
# Training steps, each loop is one epoch
for epoch in range(epochs):
print("Epoch: {}/{}".format(epoch + 1, epochs))
# Call train_step functions, get back updated loss/accuracy/steps list
train_loss_list, test_loss_list, train_acc_list, test_accuracy_list = \
train_step(model, train_loader, test_loader, gpu, criterion, optimizer, epoch, epochs,
train_loss_list, test_loss_list, train_acc_list, test_accuracy_list, print_every)
# gets model name and adds model name to checkpoint.pth filename
model_name = model.__class__.__name__
# plots test/train loss and test/train accuracy over the steps once all epochs complete
plot_loss_curves(train_loss_list, test_loss_list, train_acc_list,
test_accuracy_list, print_every, model_name)
# Updates model save path
model_dir = save_dir + model_name + '_checkpoint.pth'
print(f"model name = {model_name}")
# Call save_model and saves to saved_model folder as filename {model name}_checkpoint.pth
if model_name == 'VGG':
save_model(model, epochs, optimizer, image_datasets, model_dir)
if model_name == 'EfficientNet':
save_model(model, epochs, optimizer, image_datasets, model_dir)
if model_name == 'RegNet':
save_model_fc(model, epochs, optimizer, image_datasets, model_dir)
return
def train_step(model, train_loader, test_loader, gpu, criterion, optimizer, epoch, epochs,
train_loss_list, test_loss_list, train_acc_list, test_accuracy_list, print_every):
"""
Training step
:param model:
:param train_loader:
:param test_loader:
:param gpu:
:param criterion:
:param optimizer:
:param epoch:
:param epochs:
:param train_loss_list:
:param test_loss_list:
:param train_acc_list:
:param test_accuracy_list:
:param print_every:
:return:
"""
# initialize parameters
running_loss = 0
running_acc = 0
train_size_total = 0
steps = 0
model.train()
# send to cuda or cpu
cuda = torch.cuda.is_available()
if gpu and cuda:
model.cuda()
else:
model.cpu()
for inputs, labels in train_loader:
steps += 1
# Move input and label tensors to the (default device= cpu)
if gpu and cuda:
inputs = inputs.cuda()
labels = labels.cuda()
else:
inputs = inputs.cpu()
labels = labels.cpu()
# forward pass
outputs = model(inputs)
# Calculate train loss
loss = criterion(outputs, labels)
running_loss += loss.item()
# zero grads
optimizer.zero_grad()
# loss back
loss.backward()
# optimizer step
optimizer.step()
# Calculate and accumulate correct predictions
y_pred_class = outputs.argmax(dim=1)
running_acc += (y_pred_class == labels).sum().item()
# Get total size of test data set by getting size of batches
# ***last batch in epoch might not equal batch size
size_batch = inputs.size(0)
# calculates total number of training inputs/labels per epoch
train_size_total += size_batch
if steps % print_every == 0:
# call test_eval function using cross entropy loss calc.
test_loss, test_accuracy = test_eval(model, test_loader, criterion, gpu)
# Calculate train loss
train_loss = running_loss / print_every
train_acc = running_acc / train_size_total
# Print results every "print_every" times
print(f"Epoch: {epoch + 1}/{epochs} "
f"Train Loss: {train_loss:.3f} "
f"Train Accuracy: {train_acc * 100:.1f}% "
f"Test Loss {test_loss:.3f} "
f"Test Accuracy: {test_accuracy * 100:.1f}% "
)
# Updates loss and accuracy list values for epoch
train_loss_list.append(train_loss)
test_loss_list.append(test_loss)
train_acc_list.append(train_acc)
test_accuracy_list.append(test_accuracy)
# Resets values to zero and sets model back to train
running_loss = 0
running_acc = 0
train_size_total = 0
model.train()
# return updated list accuracy/loss values along with steps at end of each epoch
return train_loss_list, test_loss_list, train_acc_list, test_accuracy_list
# Test eval run and calculations using CE loss
def test_eval(model, dataloader, loss_fn, gpu):
"""
Test evaluation function
:param model:
:param dataloader:
:param loss_fn:
:param gpu:
:return:
"""
# Set to eval mode
model.eval()
# resets variables to zero
total_test_correct = 0
test_size_total = 0
count = 0
test_loss_running = 0
# Turn on inference context manager (sim to no_grad())
with torch.inference_mode():
# Loop through test images
for batch, (inputs, labels) in enumerate(dataloader):
# Move input and label tensors to the (default device= cpu)
cuda = torch.cuda.is_available()
if gpu and cuda:
inputs = inputs.cuda()
labels = labels.cuda()
else:
inputs = inputs.cpu()
labels = labels.cpu()
# calculates number of passes for loss average calculation
count += 1
# Forward pass
test_predicted_logits = model(inputs)
"""
Calculate and accumulate loss using CrossEntropy loss function
- CE takes softmax of outputs and
- CE calculates mean of the losses per batch
- Basically same as NLLLoss except NLLLoss softmax function needs to be in the output of the classifier
"""
loss = loss_fn(test_predicted_logits, labels)
# keeps running total of batch loss
test_loss_running += loss.item()
# Calculate and accumulate correct predictions
test_correct = test_predicted_logits.argmax(dim=1)
total_test_correct += ((test_correct == labels).sum().item())
# Get total size of test data set by getting size of batches
# ***last batch might not equal batch size
size_batch = inputs.size(0)
test_size_total += size_batch
# Adjust metrics to get average loss and accuracy per batch
test_loss = test_loss_running / count
test_acc = total_test_correct / test_size_total
# returns test loss and accuracy
return test_loss, test_acc
# Saves the model, directory is configurable
def save_model(model, epochs, optimizer, image_datasets, model_dir):
"""
saves VGG19 and EfficientNet models and state dict.
:param model:
:param epochs:
:param optimizer:
:param image_datasets:
:param model_dir:
:return:
"""
model.class_to_idx = image_datasets['train'].class_to_idx
checkpoint = {
'state_dict': model.state_dict(),
'classifier': model.classifier,
'epochs': epochs,
'class_to_idx': model.class_to_idx,
'optimizer': optimizer.state_dict(),
'arch': model}
torch.save(checkpoint, model_dir)
return
def save_model_fc(model, epochs, optimizer, image_datasets, model_dir):
"""
Saves RegNet model
:param model:
:param epochs:
:param optimizer:
:param image_datasets:
:param model_dir:
:return:
"""
model.class_to_idx = image_datasets['train'].class_to_idx
checkpoint = {
'state_dict': model.state_dict(),
'fc': model.fc,
'epochs': epochs,
'class_to_idx': model.class_to_idx,
'optimizer': optimizer.state_dict(),
'arch': model}
torch.save(checkpoint, model_dir)
return
def plot_loss_curves(train_loss, test_loss, train_acc, test_accuracy, print_every, model_name):
"""Plots training and test loss and accuracy results.
Args:
train_loss
train_acc
test_loss
test_accuracy
print_every
model_name
"""
# set values for x-axis
step_list = []
for x in range(1, len(train_loss) + 1):
step_list.append(int(print_every * x))
max_loss = max(train_loss + test_loss)
# Set size
plt.figure(figsize=(15, 7))
# Plot loss
plt.subplot(1, 2, 1)
plt.suptitle(model_name)
plt.plot(step_list, train_loss, label="train_loss")
plt.plot(step_list, test_loss, label="test_loss")
plt.title("Loss")
plt.xlabel("Batch")
plt.xlim([min(step_list), max(step_list)])
plt.ylim([0, max_loss + .2])
plt.xticks(step_list, rotation=90)
plt.legend()
# Plot accuracy
plt.subplot(1, 2, 2)
plt.plot(step_list, train_acc, label="train_accuracy")
plt.plot(step_list, test_accuracy, label="test_accuracy")
plt.title("Accuracy")
plt.xlabel("Batch")
plt.ylim([0, 1])
plt.xlim([min(step_list), max(step_list)])
plt.xticks(step_list, rotation=90)
plt.legend()
plt.show()