forked from laksjdjf/LoRA-Merger-ComfyUI
-
Notifications
You must be signed in to change notification settings - Fork 3
/
peft_utils.py
282 lines (232 loc) · 10.1 KB
/
peft_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
# Copyright 2024-present the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
import warnings
from typing import List, Literal
import torch
def reshape_weight_task_tensors(task_tensors, weights):
"""
Reshapes `weights` to match the shape of `task_tensors` by unsqeezing in the remaining dimenions.
Args:
task_tensors (`torch.Tensor`): The tensors that will be used to reshape `weights`.
weights (`torch.Tensor`): The tensor to be reshaped.
Returns:
`torch.Tensor`: The reshaped tensor.
"""
new_shape = weights.shape + (1,) * (task_tensors.dim() - weights.dim())
weights = weights.view(new_shape)
return weights
def magnitude_based_pruning(tensor: torch.Tensor, density: float) -> torch.Tensor:
"""
Prune the smallest values of the task tensors and retain the top-k values based on the specified fraction
`density`.
Args:
tensor (`torch.Tensor`):The tensor to prune.
density (`float`):The fraction of values to preserve. Should be in [0,1].
Returns:
`torch.Tensor`: The tensor with the pruned weights.
"""
mask = torch.zeros_like(tensor).reshape(-1)
k = int(density * tensor.numel())
top_k = torch.topk(tensor.abs().reshape(-1), k=k, largest=True)
mask[top_k[1]] = 1
return tensor * mask.reshape(tensor.shape)
def random_pruning(tensor: torch.Tensor, density: float, rescale: bool) -> torch.Tensor:
"""
Prune random values based on the specified fraction `density`.
Args:
tensor (`torch.Tensor`):The tensor to prune.
density (`float`):The fraction of values to preserve. Should be in [0,1].
rescale (`bool`):Whether to rescale the result to preserve the expected value of the original tensor.
Returns:
`torch.Tensor`: The pruned tensor.
"""
mask = torch.bernoulli(torch.full_like(input=tensor, fill_value=density))
pruned_tensor = tensor * mask
if rescale:
torch.div(input=pruned_tensor, other=density)
return pruned_tensor
def prune(
tensor: torch.Tensor, density: float, method: Literal["magnitude", "random"], rescale: bool = False
) -> torch.Tensor:
"""
Prune the values of task tensors based on the `method`.
Args:
tensor (`torch.Tensor`):The tensor to prune.
density (`float`):The fraction of values to preserve. Should be in [0,1].
method (`str`):The method to use to prune. Should be one of ["magnitude", "random"].
rescale (`bool`):Whether to rescale the result to preserve the expected value of the original tensor.
Returns:
`torch.Tensor`: The pruned tensor.
"""
if density >= 1:
warnings.warn(f"The density {density} is greater than or equal to 1, no pruning will be performed.")
return tensor
elif density < 0:
raise ValueError(f"Density should be >= 0, got {density}")
if method == "magnitude":
return magnitude_based_pruning(tensor, density)
elif method == "random":
return random_pruning(tensor, density, rescale=rescale)
else:
raise ValueError(f"Unknown method {method}")
def calculate_majority_sign_mask(
tensor: torch.Tensor, method: Literal["total", "frequency"] = "total"
) -> torch.Tensor:
"""
Get the mask of the majority sign across the task tensors. Task tensors are stacked on dimension 0.
Args:
tensor (`torch.Tensor`):The tensor to get the mask from.
method (`str`):The method to use to get the mask. Should be one of ["total", "frequency"].
Returns:
`torch.Tensor`: The majority sign mask.
"""
sign = tensor.sign()
if method == "total":
sign_magnitude = tensor.sum(dim=0)
elif method == "frequency":
sign_magnitude = sign.sum(dim=0)
else:
raise RuntimeError(f'Unimplemented mask method "{method}"')
majority_sign = torch.where(sign_magnitude >= 0, 1, -1)
return sign == majority_sign
def disjoint_merge(task_tensors: torch.Tensor, majority_sign_mask: torch.Tensor) -> torch.Tensor:
"""
Merge the task tensors using disjoint merge.
Args:
task_tensors (`torch.Tensor`):The task tensors to merge.
majority_sign_mask (`torch.Tensor`):The mask of the majority sign across the task tensors.
Returns:
`torch.Tensor`: The merged tensor.
"""
mixed_task_tensors = (task_tensors * majority_sign_mask).sum(dim=0)
num_params_preserved = majority_sign_mask.sum(dim=0)
return mixed_task_tensors / torch.clamp(num_params_preserved, min=1.0)
def task_arithmetic(task_tensors: List[torch.Tensor], weights: torch.Tensor) -> torch.Tensor:
"""
Merge the task tensors using `task arithmetic`.
Args:
task_tensors(`List[torch.Tensor]`):The task tensors to merge.
weights (`torch.Tensor`):The weights of the task tensors.
Returns:
`torch.Tensor`: The merged tensor.
"""
task_tensors = torch.stack(task_tensors, dim=0)
# weighted task tensors
weights = reshape_weight_task_tensors(task_tensors, weights)
weighted_task_tensors = task_tensors * weights
mixed_task_tensors = weighted_task_tensors.sum(dim=0)
return mixed_task_tensors
def magnitude_prune(task_tensors: List[torch.Tensor], weights: torch.Tensor, density: float) -> torch.Tensor:
"""
Merge the task tensors using `task arithmetic`.
Args:
task_tensors(`List[torch.Tensor]`):The task tensors to merge.
weights (`torch.Tensor`):The weights of the task tensors.
density (`float`): The fraction of values to preserve. Should be in [0,1].
Returns:
`torch.Tensor`: The merged tensor.
"""
# sparsify
task_tensors = [prune(tensor, density, method="magnitude") for tensor in task_tensors]
task_tensors = torch.stack(task_tensors, dim=0)
# weighted task tensors
weights = reshape_weight_task_tensors(task_tensors, weights)
weighted_task_tensors = task_tensors * weights
mixed_task_tensors = weighted_task_tensors.sum(dim=0)
return mixed_task_tensors
def ties(
task_tensors: List[torch.Tensor],
weights: torch.Tensor,
density: float,
majority_sign_method: Literal["total", "frequency"] = "total",
) -> torch.Tensor:
"""
Merge the task tensors using `ties`.
Args:
task_tensors(`List[torch.Tensor]`):The task tensors to merge.
weights (`torch.Tensor`):The weights of the task tensors.
density (`float`):The fraction of values to preserve. Should be in [0,1].
majority_sign_method (`str`):
The method to use to get the majority sign mask. Should be one of ["total", "frequency"].
Returns:
`torch.Tensor`: The merged tensor.
"""
# sparsify
task_tensors = [prune(tensor, density, method="magnitude") for tensor in task_tensors]
task_tensors = torch.stack(task_tensors, dim=0)
# Elect Sign
majority_sign_mask = calculate_majority_sign_mask(task_tensors, method=majority_sign_method)
# weighted task tensors
weights = reshape_weight_task_tensors(task_tensors, weights)
weighted_task_tensors = task_tensors * weights
# Disjoint Merge
mixed_task_tensors = disjoint_merge(weighted_task_tensors, majority_sign_mask)
return mixed_task_tensors
def dare_linear(task_tensors: List[torch.Tensor], weights: torch.Tensor, density: float) -> torch.Tensor:
"""
Merge the task tensors using `dare linear`.
Args:
task_tensors(`List[torch.Tensor]`):The task tensors to merge.
weights (`torch.Tensor`):The weights of the task tensors.
density (`float`):The fraction of values to preserve. Should be in [0,1].
Returns:
`torch.Tensor`: The merged tensor.
"""
# sparsify
task_tensors = [prune(tensor, density, method="random", rescale=True) for tensor in task_tensors]
task_tensors = torch.stack(task_tensors, dim=0)
# weighted task tensors
weights = reshape_weight_task_tensors(task_tensors, weights)
weighted_task_tensors = task_tensors * weights
mixed_task_tensors = weighted_task_tensors.sum(dim=0)
return mixed_task_tensors
def dare_ties(
task_tensors: List[torch.Tensor],
weights: torch.Tensor,
density: float,
majority_sign_method: Literal["total", "frequency"] = "total",
) -> torch.Tensor:
"""
Merge the task tensors using `dare ties`.
Args:
task_tensors(`List[torch.Tensor]`):The task tensors to merge.
weights (`torch.Tensor`):The weights of the task tensors.
density (`float`):The fraction of values to preserve. Should be in [0,1].
majority_sign_method (`str`):
The method to use to get the majority sign mask. Should be one of ["total", "frequency"].
Returns:
`torch.Tensor`: The merged tensor.
"""
# sparsify
task_tensors = [prune(tensor, density, method="random", rescale=True) for tensor in task_tensors]
task_tensors = torch.stack(task_tensors, dim=0)
# Elect Sign
majority_sign_mask = calculate_majority_sign_mask(task_tensors, method=majority_sign_method)
# weighted task tensors
weights = reshape_weight_task_tensors(task_tensors, weights)
weighted_task_tensors = task_tensors * weights
# Disjoint Merge
mixed_task_tensors = disjoint_merge(weighted_task_tensors, majority_sign_mask)
return mixed_task_tensors
def concat(tensors: list[torch.Tensor], weights: torch.Tensor, dim):
if not tensors:
raise ValueError("The list of tensors must not be empty.")
total_features = sum(tensor.shape[1] for tensor in tensors)
scaled_tensors = []
for t, tensor in enumerate(tensors):
r_t = tensor.shape[1]
scale = math.sqrt(total_features / r_t)
scaled_tensors.append(tensor * scale * weights[t])
return torch.cat(scaled_tensors, dim=dim)