-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathrun_experiment_logistic.py
265 lines (252 loc) · 9.86 KB
/
run_experiment_logistic.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
import pickle
import os
import yaml
import argparse
import time
import jax
from chex import PRNGKey
import jax.numpy as jnp
from typing import Dict, Tuple
from src.environments.Domain.DiscreteDomain import DiscreteDomain
from src.environments.Domain import domain_feature_generator
from src.environments.LogisticEnvironment.LogisticBandit import (
UtilityLogisticBanditEnvironment,
LogisticEnvParams,
)
from src.bandits.EmpiricalMean import EmpiricalMean
from src.bandits.LogisticUCB1 import LogisticUCB1
from src.bandits.LGPUCB import LGPUCB
from src.bandits.GPRegressor import GPRegressor
from src.utils.utility_functions import (
create_linear_utility,
create_polynomial_utility,
create_yelp_utility,
create_standard_optimisation_function
)
from src.utils.experiment import initialize_estimator
ALGORITHMS = {
"EmpiricalMean": EmpiricalMean,
"LogisticUCB1": LogisticUCB1,
"LGPUCB": LGPUCB,
"GPRegressor": GPRegressor,
}
UTILITY_FUNCTIONS = {
"linear": create_linear_utility,
"polynomial": create_polynomial_utility,
"yelp": create_yelp_utility,
"ackley": lambda rng, domain, config: create_standard_optimisation_function(
rng, domain, config, "ackley"
),
"hoelder": lambda rng, domain, config: create_standard_optimisation_function(
rng, domain, config, "hoelder"
),
"eggholder": lambda rng, domain, config: create_standard_optimisation_function(
rng, domain, config, "eggholder"
),
"rosenbrock": lambda rng, domain, config: create_standard_optimisation_function(
rng, domain, config, "rosenbrock"
),
"bukin": lambda rng, domain, config: create_standard_optimisation_function(
rng, domain, config, "bukin"
),
"branin": lambda rng, domain, config: create_standard_optimisation_function(
rng, domain, config, "branin"
),
"michalewicz": lambda rng, domain, config: create_standard_optimisation_function(
rng, domain, config, "michalewicz"
),
"matyas": lambda rng, domain, config: create_standard_optimisation_function(
rng, domain, config, "matyas"
),
}
def initialize_environment(
rng: PRNGKey, config: Dict
) -> Tuple[DiscreteDomain, UtilityLogisticBanditEnvironment, LogisticEnvParams]:
# Initialize domain
rng, _rng = jax.random.split(rng)
if config["domain"]["initialization"] == "normal":
arm_features = domain_feature_generator.normal(_rng, config)
elif config["domain"]["initialization"] == "uniform":
arm_features = domain_feature_generator.uniform(_rng, config)
elif config["domain"]["initialization"] == "meshgrid":
arm_features = domain_feature_generator.meshgrid(
_rng,
jnp.array(config["domain"]["params"]["range"]),
int(config["num_arms"] ** (1 / config["feature_dim"])),
config["feature_dim"],
)
else:
raise ValueError(
"Invalid arm_initialization. Use 'normal' or 'uniform'."
)
discrete_domain = DiscreteDomain.create(
num_elements=config["num_arms"],
features=arm_features,
)
# Initialize environment
rng, _rng = jax.random.split(rng)
utility_params, utility_function = UTILITY_FUNCTIONS[config["utility_function"]](
_rng,
discrete_domain,
config["utility_function_params"],
)
env = UtilityLogisticBanditEnvironment(
domain=discrete_domain,
utility_function=utility_function,
)
env_params = env.default_params
env_params = env_params.replace(utility_function_params=utility_params)
best_arm, best_arm_value = env.best_arm(env_params)
env_params = env_params.replace(best_arm=best_arm, best_arm_value=best_arm_value)
return discrete_domain, env, env_params
def run_experiment(
rng: PRNGKey,
config: Dict,
estimator_config: Dict,
num_iter: int,
):
"""
Run the experiment for the given environment and estimator.
:param rng: Random key
:param estimator_params_update: Dictionary with estimator parameters unique to the experiment
:return:
"""
# Initialize the environment
discrete_domain, env, env_params = initialize_environment(rng, config)
# Initialize the estimator
rng, _rng = jax.random.split(rng)
estimator, estimator_params = initialize_estimator(
_rng, config, estimator_config, discrete_domain
)
# Create function to be used with jax.lax.scan for the loop
def loop_body(carry, _):
key, estimator_params_carry = carry
key, _key = jax.random.split(key)
(
next_arm,
posterior_mean,
posterior_var,
estimator_params_carry,
) = estimator.best_arm(_key, estimator_params_carry)
key, _key = jax.random.split(key)
reward = env.pull(_key, next_arm, env_params)
regret = env.regret(next_arm, env_params)
key, _key = jax.random.split(key)
estimator_params_carry, update_info = estimator.update(
_key, next_arm, reward, estimator_params_carry
)
logs = {
"selected_arm": next_arm,
"reward": reward,
"regret": regret,
}
if "posteriors" in config["logging"]:
logs["posterior_mean"] = posterior_mean
logs["posterior_var"] = posterior_var
if "update_info" in config["logging"]:
for k, v in update_info.items():
logs[k] = v
return (key, estimator_params_carry), logs
# Run the loop
carry, outputs = jax.lax.scan(
loop_body, (rng, estimator_params), None, length=num_iter
)
return carry, outputs
if __name__ == "__main__":
# Parse command line arguments
parser = argparse.ArgumentParser(description="Run logistic bandit experiment.")
parser.add_argument(
"--dir", type=str, help="Path to the experiment's directory.", required=True
)
parser.add_argument(
"--algo",
type=str,
help="Name of the algorithm to run.",
required=False,
default=None,
)
args = parser.parse_args()
print("Output directory: ", args.dir)
print("Device used: ", jax.devices())
# Load configuration
config_path = os.path.join(args.dir, "config.yaml")
with open(config_path, "r") as f:
config = yaml.safe_load(f)
print("Configuration: ", config)
rng = jax.random.PRNGKey(config["seed"])
# Run experiment for each estimator
for estimator_config in config["algorithms"]:
if args.algo is not None and estimator_config["name"] != args.algo:
continue
print("--- Running ", estimator_config["name"], " ---")
start_time = time.time()
if config["grid_search"]:
def grid_search_run(key, penalty, rkhs_norm_ub, variance, length_scale, arm_norm_ub):
estimator_config_tmp = estimator_config.copy()
if estimator_config["name"] in ["LGPUCB", "GPRegressor"]:
estimator_config_tmp["nll_regularization_penalty"] = penalty
estimator_config_tmp["rkhs_norm_ub"] = rkhs_norm_ub
estimator_config_tmp["kernel_params"]["variance"] = variance
estimator_config_tmp["kernel_params"]["length_scale"] = length_scale
elif estimator_config["name"] in ["LogisticUCB1"]:
estimator_config_tmp["arm_norm_ub"] = arm_norm_ub
return run_experiment(
key, config, estimator_config_tmp, estimator_config_tmp["num_iter"]
)
# Apply vmap reverse and jit
grid_search_run_vmap = grid_search_run
for i in range(5, -1, -1):
in_axes = [None, None, None, None, None, None]
in_axes[i] = 0
grid_search_run_vmap = jax.vmap(grid_search_run_vmap, in_axes=in_axes)
grid_search_run_vmap = jax.jit(grid_search_run_vmap)
if estimator_config["name"] in ["LGPUCB", "GPRegressor"]:
input_values = (
jnp.array(estimator_config["nll_regularization_penalty"])
if "nll_regularization_penalty" in estimator_config
else jnp.array([0.0]),
jnp.array(estimator_config["rkhs_norm_ub"])
if "rkhs_norm_ub" in estimator_config
else jnp.array([0.0]),
jnp.array(estimator_config["kernel_params"]["variance"]),
jnp.array(estimator_config["kernel_params"]["length_scale"]),
jnp.array([0.0]),
)
elif estimator_config["name"] in ["LogisticUCB1"]:
input_values = (
jnp.array([0.0]),
jnp.array([0.0]),
jnp.array([0.0]),
jnp.array([0.0]),
jnp.array(estimator_config["arm_norm_ub"]),
)
else:
input_values = (
jnp.array([0.0]) for _ in range(5)
)
results = jax.block_until_ready(
grid_search_run_vmap(
jax.random.split(rng, config["num_seeds"]),
*input_values,
)
)
else:
run_experiment_vmap = jax.jit(
jax.vmap(
lambda x: run_experiment(
x, config, estimator_config, estimator_config["num_iter"]
)
)
)
results = jax.block_until_ready(
run_experiment_vmap(jax.random.split(rng, config["num_seeds"]))
)
print(
"Running time: {:.2f}m {:.2f}s".format(
*divmod(time.time() - start_time, 60)
)
)
# Save the results
output_file = os.path.join(args.dir, estimator_config["name"] + ".pkl")
with open(output_file, "wb") as f:
pickle.dump(results[1], f)