-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathVariableNeighborhoodSearch.py
143 lines (125 loc) · 4.55 KB
/
VariableNeighborhoodSearch.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
# -*- coding: utf-8 -*-
"""
Created on Wed Sep 26 22:24:27 2018
@author: Lauro Moraes
"""
from Method import Method
import random
import numpy as np
class VariableNeighborhoodSearch(Method):
def __init__(self, solution):
super(VariableNeighborhoodSearch, self).__init__(solution)
def run(self):
self.set_metrics('foShake','foLocalSearch','foStar', 'level')
self.setup_local_search(local_search_opt=1)
self.variable_neighborhood_search()
# self.plot_metrics()
return self.solution.fo
def selectPoints2opt(self):
n = self.n_cities-1
while True:
i = j = random.randint(0,n)
while j==i:
j = random.randint(0,n)
if i > j:
i, j = j, i
if j == i+2:
continue
if j==n:
if i==0:
continue
else:
i, j = 0, i
break
return i, j
def selectPoints3opt(self):
return sorted(random.sample(xrange(self.n_cities+1), 3))
def swap3opt(self, S, R):
a, b, c = self.selectPoints3opt()
d, e, f = a+1, b+1, c+1
R = list(R)
which = random.randint(0, 3)
if which == 0:
new_R = R[:a+1] + R[c:b-1:-1] + R[e:d-1:-1] + R[f:]
elif which == 1:
new_R = R[:a+1] + R[d:e+1] + R[b:c+1] + R[f:]
elif which == 2:
new_R = R[:a+1] + R[d:e+1] + R[c:b-1:-1] + R[f:]
elif which == 3:
new_R = R[:a+1] + R[e:d-1:-1] + R[b:c+1] + R[f:]
return np.array(new_R), S.calc_fo(R)
def swap1opt(self, S, R):
i, j = self.selectPoints2opt()
n = len(R)-1
i = j = random.randint(1,n)
while j==i:
j = random.randint(1,n)
delta1 = S.delta(i, j)
R[i], R[j] = R[j], R[i]
delta2 = S.delta(i, j)
new_fo = S.fo - delta1 + delta2
return R, new_fo
def swap2opt(self, S, R):
i, j = self.selectPoints2opt()
new_route = list(R[0:i])
new_route.extend(reversed(R[i:j+1]))
new_route.extend(R[j+1:])
delta1 = S.delta(i, j)
delta2 = S.delta(i+1, j+1)
delta3 = S.delta(i, i+1)
delta4 = S.delta(j, j+1)
new_fo = S.fo + ((delta1+delta2)-(delta3+delta4))
return new_route, new_fo
def shake(self, S, k=0):
n = self.n_cities-1
R = S.route
new_fo = S.fo
i, j = self.selectPoints2opt()
k = random.randint(0, 3)
if k==0:
R, new_fo = self.swap1opt(S, R)
elif k==1:
R, new_fo = self.swap2opt(S, R)
elif k==2:
R, new_fo = self.swap3opt(S, R)
else:
R, new_fo = self.swap1opt(S, R)
S.fo = new_fo
return new_fo, S
# return S.calc_fo(), S
def setup_local_search(self, local_search_opt = 1):
local_search_opts = ('RandomDescent', 'FirstImproventDescent', 'BestImproventDescent')
method_type = local_search_opts[local_search_opt]
self.local_search_class = getattr(__import__(method_type), method_type)
# self.method = self.local_search_class(self.solution)
# self.solution = self.method.solution
def variable_neighborhood_search(self, max_levels=5, iterMax=500):
import copy
S = copy.deepcopy(self.solution)
level, maxRepeatsOnLevel = 0, 5
cnt, cnt_abs = 0, 0
while cnt < iterMax:
# ============= Counters ================
cnt += 1
cnt_abs += 1
# ============== Shake =================
fo_shake, S = self.shake(S, k=level)
# =========== Local Search =============
S = self.local_search_class(S).solution
# ============== Plot ==================
self.metrics['foShake'].append(fo_shake)
self.metrics['foLocalSearch'].append(S.fo)
self.metrics['foStar'].append(self.solution.fo)
self.metrics['level'].append(level)
# ============== Track ==================
if cnt_abs % 100 == 0:
print(cnt_abs, level, fo_shake, S.fo, self.solution.fo)
# ========= Neighborhood Change =========
if S.calc_fo() < self.solution.fo:
print('UPDATE', cnt_abs, level, fo_shake, S.fo, self.solution.fo)
self.solution = copy.deepcopy(S)
level, cnt = 0, 0
else:
level += 1
self.fo = self.solution.fo
return self.solution