forked from deapplegate/wtgpipeline
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathWeightMasker.py
executable file
·646 lines (636 loc) · 33.8 KB
/
WeightMasker.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
#! /usr/bin/env python
#adam-does# finds problems in the flat fields and fixes them
#adam-use# THIS HAS REPLACED RegionMaker1pt1.py! Use this on the globalweight files for the 10_3 and 10_2 config
#adam-CODEtags# imagetools.FileFinder, imagetools.FileBackup, imagetools.PlotDirAndBackup
#adam-DATAtags# usable for all 10_3 data and probably 10_2 as well
#adam-useful10# 10
#adam-done10# 9
import pyfits
from matplotlib.pyplot import *
from numpy import *
import sys ; sys.path.append('/u/ki/awright/InstallingSoftware/pythons')
from fitter import Gauss
from UsefulTools import names, FromPick_data_true, FromPick_data_spots, GetMiddle, GetSpots_bins_values, ShortFileString, num2str
from collections import Counter
import scipy
import scipy.stats
import pdb
import itertools
import pickle
import imagetools
from imagetools import GetCCD,GetReads,around,points_around,listtuple,totuple,equalequal,splitter,get_center,get_centerY,get_centerX, NthEntry2Pos, HCcorner
from glob import glob
from copy import deepcopy
import time
import os
import shutil
#Plotting data
t1=time.time()
tm_year,tm_mon,tm_mday,tm_hour,tm_min,tm_sec,tm_wday, tm_yday,tm_isdst=time.localtime()
DateString=str(tm_mon)+'/'+str(tm_mday)+'/'+str(tm_year)
FileString=ShortFileString(sys.argv[0])
#Preliminaries: import and backup files first
files,path_to_data = imagetools.FileFinder(sys.argv,flname='globalweight')
print "running on "+str(len(files))+" files"
imagetools.FileBackup(files,datapath=path_to_data,backupdir='ORIGINAL_globalweights',backup_current=0)
###################PLOTTING#####################################
#plotting OFF (next 3 lines):
#2014#pltdir='Plots_WeightMasker'
#2014#PlotSave_On_Off={'fig_corner':False,'fig_streaks':False,'fig_patches':False}
#2014#PlotShow_On_Off={'fig_zoom_corner':0,'fig_corner':0,'fig_streaks':0,'fig_patches':0,'fig_cutgrid':0,'fig_grid':0,'fig_CCD':0,'fig_hist':0}
#plotting ON (next 3 lines):
pltdir=imagetools.PlotDirAndBackup(datapath=path_to_data,pltdir='Plots_WeightMasker')
PlotSave_On_Off={'fig_corner':True,'fig_streaks':False,'fig_patches':True}#fig_corner does fig_corner and fig_zoom_corner
PlotShow_On_Off={'fig_zoom_corner':1,'fig_corner':1,'fig_streaks':1,'fig_patches':3,'fig_cutgrid':1,'fig_grid':1,'fig_CCD':1,'fig_hist':1}
#use this to save figs after the loop now!
endneeds={'fig_zoom_corner':range(4)}
Nmax=40
Ngsp=0
Ngsp_max=30
#STUFF I WANT OUT OF LOOP
uplims,lowlims=zeros((10,4)),zeros((10,4))
in_func=lambda p: (lambda x: p in x)
#CUT:cut params set here
block_level=50 #<100
patch_level=3 #=3 or 2?
GSpatch_level=7
grid_level=50
#define the "almost" parameters
gridNsigs=5.5
gspNsigs=6
## Define Cut Parameters!!!
im_shape=imagetools.GetImage(files[0]).shape
if im_shape==(4080, 2000): #config==10_2
#2014# this gets divided by the number of readouts looped over, so if it's 10_3, there are 4 readouts and hist_cut_num=40, if it's 10_2 there is only one readout and it's 160
hist_cut_num=160 #the cutoff point where you say anything bin with this number or less in the histogram is considered a flyer
#SHNT
#define the cut parameters
block_cut=4.0 #3.5
block_highbias=0.3 #0.3 #give it a high bias so that it's easier to find points above average
grid_cut=7.0 #6.0
gsp_cut=8.4 #7.4
#ZOOM OUT CUT:cut with higher grid and lower gsp
grid_cut_Zout=9.5 #8.5
gsp_cut_Zout=8.0 #7.0
#ZOOM IN CUT: cut with higher gsp and lower grid
gsp_cut_Zin=13.5 #12.5
elif im_shape==(4152, 2016):
#2014# this gets divided by the number of readouts looped over, so if it's 10_3, there are 4 readouts and hist_cut_num=40, if it's 10_2 there is only one readout and it's 160
hist_cut_num=40
#define the cut parameters
block_cut=3.5 #3.5
block_highbias=0.3 #0.3 #give it a high bias so that it's easier to find points above average
grid_cut=6.0 #6.0
gsp_cut=7.4 #7.4
#ZOOM OUT CUT:cut with higher grid and lower gsp
grid_cut_Zout=8.5
gsp_cut_Zout=7.0
#ZOOM IN CUT: cut with higher gsp and lower grid
gsp_cut_Zin=12.5
else:
raise Exception('THIS IMAGE IS SOME STRANGE SHAPE (10_3 shape: (4152, 2016), 10_2 shape: (4080, 2000))\n this shape: '+str(im_shape))
def WideCutter(image,header=None,tolerance=(-.01,.03)):
light=image.reshape((-1,))
x,bins=histogram(light,bins=linspace(0,2,201)) #need limits changed for DARKs (DARK=-15,15)
countup=cumsum(x<20)
counter=bincount(countup)
start_spot=sum(counter[:counter.argmax()])+1
end_spot=sum(counter[:counter.argmax()+1])
lowlim=bins[start_spot]+tolerance[0]#add on tolerance
uplim=bins[end_spot]+tolerance[1]
cutit=(image<lowlim)+(image>uplim)
start0=(image==0)
Ncut1=sum(cutit)
cutfrac=Ncut1/float(light.size)
Ncut0=sum(start0)
frac0=Ncut0/float(light.size)
comment1= 'WeightMasker: initial (# pixels,%) equal to zero (i.e. before cuts) = ( '+str(Ncut0) +' , '+str(round(100*frac0,6))+' )'
comment2= 'WeightMasker: after WideCutter (# pixels,%) equal to zero = ( '+str(Ncut1) +' , '+str(round(100*cutfrac,6))+' )'
if (cutfrac-frac0)>.003:
print 10*"too much cut!\nmore than .3% is cutoff, and this was:" +str(round(100*cutfrac,6))
raise BaseException('too much cut!')
print comment1+'\n'+comment2
if header:
header.add_comment(comment1)
header.add_comment(comment2)
image[cutit]=0
return image
for fl in files:
CCDnum=GetCCD(fl)
figlist={'fig_corner':range(4),'fig_zoom_corner':range(4),'fig_cutgrid':range(20),'fig_uncutgrid':range(20),'fig_grid':range(4)}
Ntimes_uncutgrid,Ntimes_cutgrid=1,1
print '\n##################'+fl+'#######################\n'
fitfl=pyfits.open(fl,mode='update')
Head=fitfl[0].header
start_image=fitfl[0].data
Nzero_start=sum(start_image==0)
#Do initial cut with WideCutter right away:
start_image=WideCutter(start_image,header=Head)
CCDextrema=(start_image[start_image>0.0].min(),start_image.max())
bins=arange(CCDextrema[0],CCDextrema[1],.01)
#Get limits one readout at a time
middle_image=start_image.copy()
reads1=GetReads(middle_image)
hist_cut_num/=len(reads1)
#plot light histogram showing cuts
if PlotShow_On_Off['fig_hist']: fig_hist=figure(figsize=(8.5,15));fig_hist.suptitle('fig_hist: CCD # '+str(CCDnum),size=13)
Ncut3_total=0
Ncut2_total=0
for rnum,r1 in enumerate(reads1):
r1[r1==0]=nan
dummy_r1=r1.copy()
dummy_r1[dummy_r1==0]=nan
#STEP1:apply limits to readouts
x,bins=histogram(dummy_r1.flatten(),bins=linspace(0,2,201))
countup=cumsum(x<hist_cut_num)
counter=bincount(countup)
start_spot=sum(counter[:counter.argmax()])+1
end_spot=sum(counter[:counter.argmax()+1])
lowlim=bins[start_spot]
uplim=bins[end_spot]
outsides=(r1<lowlim)+(r1>uplim)
#$(Hcorner,Hstring),(Ccorner,Cstring)=HCcorner(r1)
#STEP2:don't apply limits to corners
(HXs,HYs),(CXs,CYs)=HCcorner(dummy_r1)
r1[outsides]=nan
CornCutr1=r1.copy()
b4=isnan(CornCutr1)
r1[HXs[0]:HXs[1],HYs[0]:HYs[1]]=dummy_r1[HXs[0]:HXs[1],HYs[0]:HYs[1]]
r1[CXs[0]:CXs[1],CYs[0]:CYs[1]]=dummy_r1[CXs[0]:CXs[1],CYs[0]:CYs[1]]
Ncut2=sum(b4);Ncut3=sum(isnan(r1))
print 'replaced # corner pixels=',Ncut2-Ncut3
Ncut3_total+=Ncut3
Ncut2_total+=Ncut2
if PlotShow_On_Off['fig_corner']:
#plot the entire readout with b4 and after corners are put back in
fig_corner=figure(figsize=(6,15))
fig_corner.suptitle('fig_corner: '+str(Ncut2-Ncut3)+' total points put back in\ncircles over points that were put back in\nwhite=hot corner & black=cold corner',size=13)
ax1=fig_corner.add_subplot(121);imshow(CornCutr1,vmin=CCDextrema[0],vmax=CCDextrema[1],interpolation='nearest',origin='lower left');colorbar();ax1.set_title('cuts applied to corner')
HXX=(array(HXs)-2076).__abs__().argmin()
HYY=(array(HYs)-248).__abs__().argmin()
CXX=(array(CXs)-2076).__abs__().argmin()
CYY=(array(CYs)-248).__abs__().argmin()
plot([HYs[0],HYs[1]],[HXs[HXX]]*2,'w');plot([HYs[HYY]]*2,[HXs[0],HXs[1]],'w')
plot([CYs[0],CYs[1]],[CXs[CXX]]*2,'k');plot([CYs[CYY]]*2,[CXs[0],CXs[1]],'k')
changed=b4*(logical_not(isnan(r1)))
changeX,changeY=nonzero(changed)
scatter(changeY,changeX,marker='o',facecolor='none',edgecolor='k')
ax2=fig_corner.add_subplot(122);imshow(r1,vmin=CCDextrema[0],vmax=CCDextrema[1],interpolation='nearest',origin='lower left');colorbar();Xlim2=ax2.get_xlim();Ylim2=ax2.get_ylim();ax2.set_title('put corner back in')
plot([HYs[0],HYs[1]],[HXs[HXX]]*2,'w');plot([HYs[HYY]]*2,[HXs[0],HXs[1]],'w')
plot([CYs[0],CYs[1]],[CXs[CXX]]*2,'k');plot([CYs[CYY]]*2,[CXs[0],CXs[1]],'k')
ax2.set_xlim(Xlim2);ax2.set_ylim(Ylim2)
ax1.set_xlim(Xlim2);ax1.set_ylim(Ylim2)
scatter(changeY,changeX,marker='o',facecolor='none',edgecolor='k')
figlist['fig_corner'][rnum]=(fig_corner,pltdir+'/plt_corner'+str(CCDnum)+'_read'+str(rnum))
if PlotShow_On_Off['fig_zoom_corner']:
#now show corners zoomed in
Hchanged=b4[HXs[0]:HXs[1],HYs[0]:HYs[1]]*(logical_not(isnan(r1[HXs[0]:HXs[1],HYs[0]:HYs[1]])))
HchangeX,HchangeY=nonzero(Hchanged)
Cchanged=b4[CXs[0]:CXs[1],CYs[0]:CYs[1]]*(logical_not(isnan(r1[CXs[0]:CXs[1],CYs[0]:CYs[1]])))
CchangeX,CchangeY=nonzero(Cchanged)
HCornCutr1_area=(CornCutr1[HXs[0]:HXs[1],HYs[0]:HYs[1]]).copy()
CCornCutr1_area=(CornCutr1[CXs[0]:CXs[1],CYs[0]:CYs[1]]).copy()
Hr1_area=(r1[HXs[0]:HXs[1],HYs[0]:HYs[1]]).copy()
Cr1_area=(r1[CXs[0]:CXs[1],CYs[0]:CYs[1]]).copy()
endneeds['fig_zoom_corner'][rnum]=(Ncut2-Ncut3,HCornCutr1_area,CCornCutr1_area,Hr1_area,Cr1_area,HXs,HYs,CXs,CYs,HchangeX,HchangeY,CchangeX,CchangeY)
uplims[CCDnum-1][rnum]=uplim
lowlims[CCDnum-1][rnum]=lowlim
Ncutr1=sum(isnan(r1))
CutFrac=Ncutr1/float(r1.size)
if PlotShow_On_Off['fig_hist']:
ax=fig_hist.add_subplot(2,2,rnum+1)
x,bins,patch=ax.hist(dummy_r1.flatten(),bins=linspace(0,2,201),log=True)
ax.plot([lowlim,lowlim],[1,max(x)],'r')
ax.plot([uplim,uplim],[1,max(x)],'r')
ax.set_xlim(CCDextrema[0]-.01,CCDextrema[1]+.01)
ax.set_ylim(1,10**7)
ax.text(ax.get_xlim()[0],10**6.3,'%cut='+str(round(100*CutFrac,7)))
ax.set_title('Readout #'+str(rnum+1)+'\nLow Lim: '+str(round(lowlim,2))+'\nUp Lim: '+str(round(uplim,2)))
if PlotShow_On_Off['fig_hist']:
NameString=(pltdir+'/plt_hist'+str(CCDnum))
fig_hist.text(.03,.03,"File:"+os.getcwd()+fl,size=10)
fig_hist.text(.303,.013,"Date:"+DateString,size=10)
fig_hist.text(.503,.013,"Named:"+NameString,size=10)
fig_hist.savefig(NameString)
Head.add_comment( 'WeightMasker: after Readout Cut and replacing '+str(Ncut2_total-Ncut3_total)+'corner pixels (# pixels,%) equal to zero = ( '+str(Ncut3_total) +' , '+str(round(100*Ncut3_total/float(start_image.size),6))+' )')
final_image=middle_image.copy()
reads2=GetReads(final_image)
for rnum,r2 in enumerate(reads2):
print "step #"+str(rnum)+": total zero pixels = ",int(sum(isnan(final_image)))
r2_nan=isnan(r2)
r2_nan_insides=scipy.ndimage.binary_erosion(r2_nan,imagetools.conn4)
r2_nan[r2_nan_insides]=0
bads=asarray(nonzero(r2_nan)).T
#STEP3:don't go along streaks (find spots along streaks not at the top and bottom and remove them from bads)
x,bins=histogram(bads[:,1],bins=arange(513)-.5)
rmXbads=nonzero(x>4100)[0]
for rmX in rmXbads:
keep_col=bads[:,1]!=rmX
bads=bads[keep_col]
rm_middle=nonzero((x>100)*(x<4101))[0]
thespots=[]
#import ipdb; ipdb.set_trace() # BREAKPOINT (`c` or `n` to continue)
for rmX in rm_middle:
good_cols=bads[bads[:,1]!=rmX]
bad_cols=bads[bads[:,1]==rmX]
indicies=bad_cols[:,0]
splits=array_split(indicies,where(diff(indicies)!=1)[0]+1)
lengths=array([len(split) for split in splits])
jump=lengths.max()
if jump>50:
jumparg=lengths.argmax()
pickfrom=cumsum(append([0],lengths))
x1=pickfrom[jumparg]
x2=x1+jump-1
else:continue
thespots+=[bad_cols[x1],bad_cols[x2]]
top_bottom=asarray([bad_cols[x1],bad_cols[x2]])
new_bads=append(good_cols,top_bottom)
bads=new_bads.reshape(good_cols.shape[0]+2,good_cols.shape[1])
#PLOTstreaks
if len(thespots) and PlotShow_On_Off['fig_streaks']:
thespots=array(thespots)
fig_streaks=figure();imshow(r2,vmin=CCDextrema[0],vmax=CCDextrema[1],interpolation='nearest',origin='lower left');fig_streaks.suptitle('fig_streaks: streaks found and shown here',size=13)
scatter(thespots[:,1],thespots[:,0])
if PlotSave_On_Off['fig_streaks']:
fig_streaks.savefig(pltdir+'/plt_streaks'+str(CCDnum)+'_read'+str(rnum))
#make list "others" for bads that need to be searched around and "around_bads" for spots within the patch around bad that should be excluded from the grid search in STEP4
others=[]
around_bads=[]
for bad in bads:
if not (((bads==[bad[0]-1,bad[1]]).prod(axis=1).any()) and ((bads==[bad[0],bad[1]-1]).prod(axis=1).any()) and ((bads==[bad[0]+1,bad[1]]).prod(axis=1).any()) and ((bads==[bad[0],bad[1]+1]).prod(axis=1).any())):
others.append(tuple(bad))
around_bads+=points_around(r2.shape,bad,level=patch_level)
around_bads_set=set(around_bads)
#STEP4:grid search for outliers and put them in bads
#set up grid to search on
grid_x=[grid_level/2+grid_level*i for i in range(r2.shape[0]/grid_level)]
grid_y=[grid_level/2+grid_level*i for i in range(r2.shape[1]/grid_level)]
if grid_y[-1]+grid_level<r2.shape[1]:
grid_y.append(grid_level/2+grid_level*len(grid_y))
if grid_x[-1]+grid_level<r2.shape[1]:
grid_x.append(grid_level/2+grid_level*len(grid_x))
#plot the readout with circles and boxes around points considered
if PlotShow_On_Off['fig_grid']:
fig_grid=figure(figsize=(8.5,15))
fig_grid.subplots_adjust(bottom=.06,top=.94,right=1,left=0,wspace=0)
fig_grid.suptitle('fig_grid: reads b4 & after grid search for grid_cut='+str(grid_cut)+' gsp_cut='+str(gsp_cut),size=13)
fig_grid.text(.03,.02,"File:"+os.getcwd()+'/'+fl,size=10)
B4ax=fig_grid.add_subplot(1,2,1)
B4ax.set_title('Before')
B4ax.imshow(copy(r2),vmin=CCDextrema[0],vmax=CCDextrema[1],interpolation='nearest',origin='lower left')
Aax=fig_grid.add_subplot(1,2,2)
Aax.set_title('After')
Aax.imshow(r2,vmin=CCDextrema[0],vmax=CCDextrema[1],interpolation='nearest',origin='lower left')
Gxlims,Gylims=B4ax.get_xlim(),B4ax.get_ylim()
#PLOTgsp1/4
if PlotShow_On_Off['fig_cutgrid']:
Ncounter_cutgrid,Ncounter_uncutgrid=1,1
fig_cutgrid=figure(figsize=(20,15))
#fig_cutgrid.set_facecolor('k')
fig_cutgrid.suptitle('fig_cutgrid: cut for grid_cut='+str(grid_cut)+' gsp_cut='+str(gsp_cut),size=15)
fig_cutgrid.subplots_adjust(right=.9,top=.95,left=.01,bottom=.05,wspace=.01,hspace=.01)
fig_cutgrid.text(.03,.02,"File:"+os.getcwd()+'/'+fl,size=10)
fig_uncutgrid=figure(figsize=(10,15))
#fig_uncutgrid.set_facecolor('k')
fig_uncutgrid.suptitle('fig_uncutgrid: UNCUT for grid_cut='+str(grid_cut)+' gsp_cut='+str(gsp_cut),size=15)
fig_uncutgrid.subplots_adjust(right=.99,top=.95,left=.01,bottom=.05,wspace=.01,hspace=.01)
fig_uncutgrid.text(.03,.02,"File:"+os.getcwd()+'/'+fl,size=10)
#$pairspots,cutpairspots,unpairspots=[],[],[]`
pts_covered=set()
for xx,yy in itertools.product(grid_x,grid_y):
(grid,grid_pts)=around(r2,(xx,yy),grid_level)
if isnan(grid).all(): continue #this actually happens for 10_2 config
#remember grid_pts are points for r, not for grid
Nums,bins=histogram(grid.flatten(),bins=linspace(0.25,1.75,601))
try:
fitinst=Gauss(GetMiddle(bins),Nums,threshold=.001)
except TypeError:
if isnan(grid).all(): continue #this actually happens for 10_2 config
elif isnan(grid).sum()>grid.size/2: continue #this actually happens for 10_2 config
else:raise
except IndexError:
if isnan(grid).all(): continue #this actually happens for 10_2 config
elif isnan(grid).sum()>grid.size/2: continue #this actually happens for 10_2 config
else:raise
GSsigma=fitinst.sigma
GSmean=fitinst.mean
#later: I treat it equal for points above average and below, might want to have a high bias for selection as well as cut
grid_signifs=(grid-GSmean).__abs__()/GSsigma
GSflyers=grid_signifs>gridNsigs
lowerleft=grid_pts[:,0]
GSpairs=asarray(nonzero(GSflyers)).T+lowerleft
GStuples_set=set([tuple(uu) for uu in GSpairs])
pts_i=GStuples_set-around_bads_set
pts_i=list(pts_i)
Rpts=[points_around(r2.shape,pairpair,patch_level) for pairpair in pts_i]
pts_f=set()
#if there are mutiple points in GSpairs that are within the same patch, then pick out the most significant point and only use that one
for qq in pts_i:
qq_in=in_func(qq)
#T/F if qq in R(p) for all p in pts_i
pts_has_qq_in_Rpt=map(qq_in,Rpts)
#significance of all p in R(qq), if p !in R(qq), it's 0
signifs_in_Rqq=array([abs(r2[pts_i[i]]-GSmean) if ptTF else 0 for i,ptTF in enumerate(pts_has_qq_in_Rpt)])
pts_f.add(pts_i[signifs_in_Rqq.argmax()])
pts_f-=pts_covered
pts_covered|=pts_f
#now loop over the bad points in this portion of the grid search and see if they are really bad
for pairpair in pts_f:
(GSpatch,GSpatch_pts)=around(r2,pairpair,GSpatch_level)
#if isnan(GSpatch).all(): continue #this actually happens for 10_2 config
gsp=GSpatch[isfinite(GSpatch)]
Nums,bins=histogram(gsp,bins=linspace(0.25,1.75,601))
try:
fitinst=Gauss(GetMiddle(bins),Nums,threshold=.001)
except TypeError:
if isnan(GSpatch).all(): continue #this actually happens for 10_2 config
elif isnan(GSpatch).sum()>GSpatch.size/2: continue #this actually happens for 10_2 config
else:raise
except IndexError:
if isnan(GSpatch).all(): continue #this actually happens for 10_2 config
elif isnan(GSpatch).sum()>GSpatch.size/2: continue #this actually happens for 10_2 config
else:raise
gspsigma=fitinst.sigma
gspmean=fitinst.mean
significance_grid=abs(r2[pairpair]-GSmean)/GSsigma
significance_gsp=abs(r2[pairpair]-gspmean)/gspsigma
CUTtight= (significance_grid>grid_cut) * (significance_gsp>gsp_cut)
#later: might want to add different conditions onto tightcut specific to certain defects in the image
CUTZin= (significance_gsp>gsp_cut_Zin)
CUTZout= (significance_gsp>gsp_cut_Zout)*(significance_grid>grid_cut_Zout)
CUTloose= significance_gsp>gspNsigs
CUTall=CUTtight+CUTZin+CUTZout
if CUTall:
if PlotShow_On_Off['fig_grid']:
B4ax.plot([grid_pts[1,0],grid_pts[1,0],grid_pts[1,1],grid_pts[1,1],grid_pts[1,0]],[grid_pts[0,0],grid_pts[0,1],grid_pts[0,1],grid_pts[0,0],grid_pts[0,0]],'k-')
Aax.plot([grid_pts[1,0],grid_pts[1,0],grid_pts[1,1],grid_pts[1,1],grid_pts[1,0]],[grid_pts[0,0],grid_pts[0,1],grid_pts[0,1],grid_pts[0,0],grid_pts[0,0]],'k-')
B4ax.scatter(pairpair[1],pairpair[0],c='k',marker='o',facecolor='none')
Aax.scatter(pairpair[1],pairpair[0],c='k',marker='o',facecolor='none')
#$B4ax.text(pairpair[1],pairpair[0]+.5,str(round(significance_grid,2)))
#$B4ax.text(pairpair[1],pairpair[0]-.5,str(round(significance_gsp,2)),color='purple')
if PlotShow_On_Off['fig_cutgrid']:
#PLOTgsp2/4
if (Ncounter_cutgrid==Nmax):
Ncounter_cutgrid=1
figlist['fig_cutgrid'][Ntimes_cutgrid]=(fig_cutgrid,pltdir+'/plt_cutgrid'+str(CCDnum)+'_gridcut'+num2str(grid_cut)+'_gspcut'+num2str(gsp_cut)+'_num'+str(Ntimes_cutgrid))
fig_cutgrid=figure(figsize=(20,15))
#fig_cutgrid.set_facecolor('k')
fig_cutgrid.suptitle('fig_cutgrid: cut for grid_cut='+str(grid_cut)+' gsp_cut='+str(gsp_cut),size=15)
#$fig_cutgrid.subplots_adjust(right=.9,top=.95,left=.01,bottom=.05,wspace=.01,hspace=.01)
fig_cutgrid.subplots_adjust(right=.99,top=.95,left=.01,bottom=.05,wspace=.01,hspace=.01)
fig_cutgrid.text(.03,.02,"File:"+os.getcwd()+'/'+fl,size=10)
Ntimes_cutgrid+=1
#put area around here in the cut plot
#$cutpairspots+=points_around(r2.shape,pairpair,GSpatch_level)
cutAX=fig_cutgrid.add_subplot(8,10,Ncounter_cutgrid)
cutAX.set_xticklabels([]);cutAX.set_yticklabels([]);cutAX.set_xticks([]);cutAX.set_yticks([])
cutAX.imshow(GSpatch.copy(),vmin=CCDextrema[0],vmax=CCDextrema[1],interpolation='nearest',origin='lower left')
cutAX.text(8,8,str(round(significance_grid,2)))
cutAX.text(8,6,str(round(significance_gsp,2)),color='purple')
scatpt=array(pairpair)-GSpatch_pts[:,0]
cutAX.scatter(scatpt[1],scatpt[0],color='w',facecolor='none',s=3)
cutAX.set_xlim(0,14);cutAX.set_ylim(1,13)
if not CUTtight:
if CUTZin:
cutAX.text(5,10,'CUTZin')
if CUTZout:
cutAX.text(5,10,'CUTZout')
cutAX=fig_cutgrid.add_subplot(8,10,Ncounter_cutgrid+40)
cutAX.set_xticklabels([]);cutAX.set_yticklabels([]);cutAX.set_xticks([]);cutAX.set_yticks([])
im_cutgrid=cutAX.imshow(GSpatch,vmin=CCDextrema[0],vmax=CCDextrema[1],interpolation='nearest',origin='lower left')
cutAX.set_xticklabels([]);cutAX.set_yticklabels([]);cutAX.set_xticks([]);cutAX.set_yticks([])
cutAX.text(8,8,str(round(significance_grid,2)))
cutAX.text(8,6,str(round(significance_gsp,2)),color='purple')
scatpt=array(pairpair)-GSpatch_pts[:,0]
cutAX.scatter(scatpt[1],scatpt[0],color='w',facecolor='none',s=3)
cutAX.set_xlim(0,14);cutAX.set_ylim(1,13)
if not CUTtight:
if CUTZin:
cutAX.text(5,10,'CUTZin')
if CUTZout:
cutAX.text(5,10,'CUTZout')
#changed:if pt to be cut, then put all of R(p) besides the outer layer in covered points
pts_covered|=set(points_around(r2.shape,pairpair,patch_level-1))
Ncounter_cutgrid+=1
#end of "if CUTtight": apply the cut
others.append(pairpair)
elif CUTloose and PlotShow_On_Off['fig_cutgrid']:
#PLOTgsp3/4
if (Ncounter_uncutgrid==Nmax):
Ncounter_uncutgrid=1
figlist['fig_uncutgrid'][Ntimes_uncutgrid]=(fig_uncutgrid,pltdir+'/plt_uncutgrid'+str(CCDnum)+'_gridcut'+num2str(grid_cut)+'_gspcut'+num2str(gsp_cut)+'_num'+str(Ntimes_cutgrid))
fig_uncutgrid=figure(figsize=(10,15))
#fig_uncutgrid.set_facecolor('k')
fig_uncutgrid.suptitle('fig_uncutgrid: UNCUT for grid_cut='+num2str(grid_cut)+' gsp_cut='+num2str(gsp_cut),size=15)
fig_uncutgrid.subplots_adjust(right=.99,top=.95,left=.01,bottom=.05,wspace=.01,hspace=.01)
fig_uncutgrid.text(.03,.02,"File:"+os.getcwd()+'/'+fl,size=10)
Ntimes_uncutgrid+=1
#if it's not cut by grid or gsp and it satisfies the loose cut and Plot is on
#then put in uncut plot
#$and this spot hasen't been plotted b4
#$unpairspots+=points_around(r2.shape,pairpair,GSpatch_level)
uncutAX=fig_uncutgrid.add_subplot(8,5,Ncounter_uncutgrid)
uncutAX.set_xticklabels([]);uncutAX.set_yticklabels([]);uncutAX.set_xticks([]);uncutAX.set_yticks([])
uncutAX.imshow(GSpatch,vmin=CCDextrema[0],vmax=CCDextrema[1],interpolation='nearest',origin='lower left')
uncutAX.text(8,8,str(round(significance_grid,2)))
uncutAX.text(8,6,str(round(significance_gsp,2)),color='purple')
scatpt=array(pairpair)-GSpatch_pts[:,0]
uncutAX.scatter(scatpt[1],scatpt[0],color='w',facecolor='none',s=3)
uncutAX.set_xlim(0,14);uncutAX.set_ylim(1,13)
Ncounter_uncutgrid+=1
#$old way of trying to optimize cut params
#$if Ngsp<Ngsp_max and (pairpair not in pairspots):
#$ pairspots+=points_around(r2.shape,pairpair,GSpatch_level)
#$ fig_gsp=figure(figsize=(8,15));ax_gsp=fig_gsp.add_subplot(211)
#$ if abs(significance_gsp)<abs(significance_grid):
#$ fig_gsp.suptitle('less important upon zooming')
#$ else:
#$ fig_gsp.suptitle('ZOOM IN makes more important')
#$ ax_gsp.set_title(str(round(significance_gsp,2)))
#$ ax_gsp.imshow(GSpatch,vmin=CCDextrema[0],vmax=CCDextrema[1],interpolation='nearest',origin='lower left')
#$ ax_gsp.text(8,7.5,str(round(significance_grid,2)))
#$ ax_gsp.text(8,6.5,str(round(significance_gsp,2)),color='purple')
#$ ax_grid=fig_gsp.add_subplot(212)
#$ ax_grid.set_title(str(round(significance_grid,2)))
#$ ax_grid.imshow(grid,vmin=CCDextrema[0],vmax=CCDextrema[1],interpolation='nearest',origin='lower left')
#$ signif_gsp.append(round(significance_gsp,2))
#$ signif_grid.append(round(significance_grid,2))
#$ cut_list[Ngsp]=raw_input(prompts[Ngsp])
#$ Ngsp+=1
#put circles over the points and write the significance of the point
if PlotShow_On_Off['fig_grid']:
B4ax.set_xlim(Gxlims);B4ax.set_ylim(Gylims)
Aax.set_xlim(Gxlims);Aax.set_ylim(Gylims)
figlist['fig_grid'][rnum]=(fig_grid,pltdir+'/plt_grid'+str(CCDnum)+'_read'+str(rnum)+'_ReadoutGridCuts_gridcut'+num2str(grid_cut)+'_gspcut'+num2str(gsp_cut))
plot_coverage=set()
#STEP5:search around nans+flyers-streaks for bad values and set=nan
for bnum,bad in enumerate(others):
#remember# array(X,Y)=====plot(Y,X) #for axes defined by imshow(origin='lower left')
(block,block_pts),(patch,patch_pts)=around(r2,bad,[block_level,patch_level])
flat_block=(block.flatten()).copy()
flat_block=flat_block[isfinite(flat_block)]
#use sigma rather than blockhigh blocklow and block_cut
Nums,bins=histogram(flat_block,bins=linspace(0.25,1.75,601))
try:
fitinst=Gauss(GetMiddle(bins),Nums,threshold=.0002)
except TypeError:
if isnan(block).all(): continue #this actually happens for 10_2 config
elif isnan(block).sum()>block.size/2: continue #this actually happens for 10_2 config
else:raise
except IndexError:
if isnan(block).all(): continue #this actually happens for 10_2 config
elif isnan(block).sum()>block.size/2: continue #this actually happens for 10_2 config
else:raise
light_sigma=fitinst.sigma
light_mean=fitinst.mean
blocklow=light_mean-(light_sigma*block_cut)
blockhigh=light_mean+(light_sigma*(block_cut-block_highbias))
outsides=(patch>blockhigh)+(patch<blocklow)
p=patch.copy();b=block.copy()
patch[outsides]=nan
## probably don't even need this anymore, but I'll keep it so that the corner thing goes 2 deep for these patches
#2014#patch=imagetools.MaskMiddles(patch)
lowerleft=patch_pts[:,0]
covered_spots=totuple(asarray(nonzero(outsides)).T+lowerleft)
#now plot it if it needs plotting
if (bnum>=PlotShow_On_Off['fig_patches']) or (bad in plot_coverage):
continue
for i,j in itertools.product(range(patch.shape[0]),range(patch.shape[1])):
plot_coverage.add((lowerleft[0]+i,lowerleft[1]+j))
fig_patches=figure(figsize=(20,15))
ax=fig_patches.add_subplot(241)
im=ax.imshow(r2,vmin=CCDextrema[0],vmax=CCDextrema[1],interpolation='nearest',origin='lower left')
xlims,ylims=ax.get_xlim(),ax.get_ylim()
ax.plot([patch_pts[1,0],patch_pts[1,0],patch_pts[1,1],patch_pts[1,1],patch_pts[1,0]],[patch_pts[0,0],patch_pts[0,1],patch_pts[0,1],patch_pts[0,0],patch_pts[0,0]],'r')
ax.plot([block_pts[1,0],block_pts[1,0],block_pts[1,1],block_pts[1,1],block_pts[1,0]],[block_pts[0,0],block_pts[0,1],block_pts[0,1],block_pts[0,0],block_pts[0,0]],'k-')
for spot in covered_spots:
scatter(spot[1],spot[0],c='k',marker='o',facecolor='none')
ax.set_xlim(xlims),ax.set_ylim(ylims)
ax.set_xticklabels([])
light_sigma=fitinst.sigma
light_mean=fitinst.mean
blocklow=light_mean-(light_sigma*block_cut)
blockhigh=light_mean+(light_sigma*(block_cut-block_highbias))
fig_patches.add_subplot(242)
imshow(b,vmin=CCDextrema[0],vmax=CCDextrema[1],interpolation='nearest',origin='lower left')
fig_patches.add_subplot(245)
imshow(p,vmin=CCDextrema[0],vmax=CCDextrema[1],interpolation='nearest',origin='lower left')
fig_patches.add_subplot(246)
imshow(patch,vmin=CCDextrema[0],vmax=CCDextrema[1],interpolation='nearest',origin='lower left')
ax_patch=fig_patches.add_subplot(122)
Nums,bins,patch=hist(flat_block,bins=linspace(0.25,1.75,601),log=True)
xx,yy=fitinst.getfitline()
yylims=ax_patch.get_ylim()
plot(xx,yy,'green')
plot([blocklow,blocklow],yylims,'r--')
plot([blockhigh,blockhigh],yylims,'r--')
ax_patch.set_ylim(yylims);ax_patch.set_xlim(CCDextrema[0]-.01,CCDextrema[1]+.01)
fig_patches.colorbar(im)
if PlotSave_On_Off['fig_patches']:
if not outsides.any():
fig_patches.savefig(pltdir+'/plt_patches'+str(CCDnum)+'_read'+str(rnum)+'_none_blockcuthigh'+num2str(block_cut)+'_low'+num2str(block_cut-block_highbias)+'_badspot'+str(bad[0])+'_'+str(bad[1]))
else:
fig_patches.savefig(pltdir+'/plt_patches'+str(CCDnum)+'_read'+str(rnum)+'_some_blockcuthigh'+num2str(block_cut)+'_low'+num2str(block_cut-block_highbias)+'_badspot'+str(bad[0])+'_'+str(bad[1]))
#bad loop end
if PlotShow_On_Off['fig_cutgrid']:
#PLOTgsp4/4
figlist['fig_cutgrid'][Ntimes_cutgrid]=(fig_cutgrid,pltdir+'/plt_cutgrid'+str(CCDnum)+'_gridcut'+num2str(grid_cut)+'_gspcut'+num2str(gsp_cut)+'_num'+str(Ntimes_cutgrid))
figlist['fig_uncutgrid'][Ntimes_uncutgrid]=(fig_uncutgrid,pltdir+'/plt_uncutgrid'+str(CCDnum)+'_gridcut'+num2str(grid_cut)+'_gspcut'+num2str(gsp_cut)+'_num'+str(Ntimes_cutgrid))
Ntimes_uncutgrid+=1
Ntimes_cutgrid+=1
if PlotShow_On_Off['fig_zoom_corner']:
Nreplaced,HCornCutr1_area,CCornCutr1_area,Hr1_area,Cr1_area,HXs,HYs,CXs,CYs,HchangeX,HchangeY,CchangeX,CchangeY=endneeds['fig_zoom_corner'][rnum]
fig_zoom_corner=figure(figsize=(20,10))
fig_zoom_corner.suptitle('fig_zoom_corner: '+str(Nreplaced)+' total points put back in to the image',size=13)
ax1=fig_zoom_corner.add_subplot(231)
ax1.set_title('cuts applied to hot corner')
ax1.imshow(HCornCutr1_area,vmin=CCDextrema[0],vmax=CCDextrema[1],interpolation='nearest',origin='lower left')
ax1.scatter(HchangeY,HchangeX,marker='o',facecolor='none',edgecolor='k',s=25)
ax2=fig_zoom_corner.add_subplot(232)
ax2.set_title('without cuts in hot corner')
ax2.imshow(Hr1_area,vmin=CCDextrema[0],vmax=CCDextrema[1],interpolation='nearest',origin='lower left')
ax2.scatter(HchangeY,HchangeX,marker='o',facecolor='none',edgecolor='k',s=25)
ax5=fig_zoom_corner.add_subplot(233)
ax5.set_title('final hot corner')
ax5.imshow(r2[HXs[0]:HXs[1],HYs[0]:HYs[1]],vmin=CCDextrema[0],vmax=CCDextrema[1],interpolation='nearest',origin='lower left')
ax5.scatter(HchangeY,HchangeX,marker='o',facecolor='none',edgecolor='k',s=25)
ax3=fig_zoom_corner.add_subplot(234)
ax3.set_title('cuts applied to cold corner')
ax3.imshow(CCornCutr1_area,vmin=CCDextrema[0],vmax=CCDextrema[1],interpolation='nearest',origin='lower left')
ax3.scatter(CchangeY,CchangeX,marker='o',facecolor='none',edgecolor='k',s=25)
ax4=fig_zoom_corner.add_subplot(235)
ax4.set_title('without cuts in cold corner')
ax4.imshow(Cr1_area,vmin=CCDextrema[0],vmax=CCDextrema[1],interpolation='nearest',origin='lower left')
ax4.scatter(CchangeY,CchangeX,marker='o',facecolor='none',edgecolor='k',s=25)
ax6=fig_zoom_corner.add_subplot(236)
ax6.set_title('final cold corner')
ax6.imshow(r2[CXs[0]:CXs[1],CYs[0]:CYs[1]],vmin=CCDextrema[0],vmax=CCDextrema[1],interpolation='nearest',origin='lower left')
ax6.scatter(CchangeY,CchangeX,marker='o',facecolor='none',edgecolor='k',s=25)
ax1.set_xlim(0,200);ax1.set_ylim(0,200);ax2.set_xlim(0,200);ax2.set_ylim(0,200);ax3.set_xlim(0,200);ax3.set_ylim(0,200);ax4.set_xlim(0,200);ax4.set_ylim(0,200);ax5.set_xlim(0,200);ax5.set_ylim(0,200);ax6.set_xlim(0,200);ax6.set_ylim(0,200)
figlist['fig_zoom_corner'][rnum]=(fig_zoom_corner,pltdir+'/plt_zoom_corner'+str(CCDnum)+'_read'+str(rnum))
#read loop end
#one last middle check
final_image=imagetools.MaskMiddles(final_image)
final_image=imagetools.MaskMiddles(final_image,corners=0) #do it again, but without corners
final_image_nans=isnan(final_image)
nan_them=scipy.ndimage.binary_fill_holes(final_image_nans)
final_image[nan_them]=nan
#file loop end
plot_start_image=start_image.copy()
plot_start_image[start_image==0]=nan
if PlotShow_On_Off['fig_CCD']:
fig_CCD=figure(figsize=(20,12))
fig_CCD.subplots_adjust(left=.05,right=.9)
fig_CCD.suptitle('fig_CCD: CCD # '+str(CCDnum),size=15)
ax=fig_CCD.add_subplot(1,3,1)
ax.set_title('Before: fraction cut='+str(round(sum(isnan(plot_start_image))/float(start_image.size),7))+'\n'+str(isnan(plot_start_image).sum())+' total pixels cut ')
imshow(plot_start_image,vmin=CCDextrema[0],vmax=CCDextrema[1],interpolation='nearest',origin='lower left')
ax=fig_CCD.add_subplot(1,3,2)
ax.set_title('Middle: fraction cut='+str(round(sum(isnan(middle_image))/float(middle_image.size),7))+'\n'+str(isnan(middle_image).sum())+' total pixels cut ')
imshow(middle_image,vmin=CCDextrema[0],vmax=CCDextrema[1],interpolation='nearest',origin='lower left')
ax=fig_CCD.add_subplot(1,3,3)
ax.set_title('Final: fraction cut='+str(round(isnan(final_image).sum()/float(final_image.size),7))+'\n'+str(isnan(final_image).sum())+' total pixels cut ')
im=ax.imshow(final_image,vmin=CCDextrema[0],vmax=CCDextrema[1],interpolation='nearest',origin='lower left')
ax_final=fig_CCD.add_axes([.92,.15,.03,.7])
fig_CCD.colorbar(im,cax=ax_final)
NameString=(pltdir+'/plt_CCD'+str(CCDnum)+'_3LightHist')
fig_CCD.text(.03,.03,"File:"+os.getcwd()+'/'+fl,size=10)
fig_CCD.text(.603,.03,"Date:"+DateString,size=10)
fig_CCD.text(.803,.03,"Named:"+NameString,size=10)
fig_CCD.savefig(NameString)
Ncut4=sum((isnan(final_image))+(final_image==0.0))
percut=100*(Ncut4-Nzero_start)/float(start_image.size)
Head.add_comment( 'WeightMasker: after Grid Search Cut with streaks omitted (# pixels,%) equal to zero = ( '+str(Ncut4) +' , '+str(round(100*Ncut4/float(start_image.size),6))+' )')
Head.add_comment( 'WeightMasker: after all cuts are made, the total (# pixels,%) cut BY WeightMasker ONLY = ( '+str(Ncut4-Nzero_start)+' , '+str(round(percut,6))+' )')
if percut>.6:
raise BaseException('Too much was cut out for this to be ok')
elif percut>.2:
print "wayyyy too much cut!!!\n"*100
print "total percent cut (not including the stuff that started off as 0) = ",percut
saved_image=final_image.copy()
saved_image[isnan(saved_image)]=0
fitfl[0].data=saved_image
Head.add_history('WeightMasker Updated This File on '+DateString+' (see header.comments for cut details)')
fitfl.flush()
#now save the figures I've waited until now to save (so that the final image will be in there)
for key in figlist.keys():
try:
if not PlotShow_On_Off[key]: continue
except KeyError:
pass
for something in figlist[key]:
if type(something)==int:continue
else:
something[0].savefig(something[1])
something[0].clf()
if PlotShow_On_Off['fig_hist']:
fig_hist.clf()
if PlotShow_On_Off['fig_CCD']:
fig_CCD.clf()
if len(thespots) and PlotShow_On_Off['fig_streaks']:
fig_streaks.clf()
if PlotShow_On_Off['fig_patches']:
fig_patches.clf()
t2=time.time()
print "took ",(t2-t1)/3600.0," hours"