forked from snooty7/BrawlStars
-
Notifications
You must be signed in to change notification settings - Fork 0
/
5test_model.py
320 lines (265 loc) · 9.4 KB
/
5test_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
from __future__ import print_function
import numpy as np
from grabscreen import grab_screen
import cv2
import time
import pywinauto
from directkeys import PressKey,ReleaseKey, W, A, S, D
from getkeys import key_check
from collections import deque, Counter
import random
from statistics import mode,mean
from motion import motion_detection
#############################################################
# keras imports
from keras.applications.vgg16 import VGG16, preprocess_input
from keras.applications.vgg19 import VGG19, preprocess_input
from keras.applications.xception import Xception, preprocess_input
from keras.applications.resnet50 import ResNet50, preprocess_input
from keras.applications.inception_resnet_v2 import InceptionResNetV2, preprocess_input
from keras.applications.mobilenet import MobileNet, preprocess_input
from keras.applications.inception_v3 import InceptionV3, preprocess_input
from keras.preprocessing import image
from keras.models import Model
from keras.models import model_from_json
from keras.layers import Input
# other imports
from sklearn.linear_model import LogisticRegression
import os
import json
import pickle
########################################################################
GAME_WIDTH = 800
GAME_HEIGHT = 600
how_far_remove = 800
rs = (20,15)
log_len = 25
motion_req = 800
motion_log = deque(maxlen=log_len)
WIDTH = 299
HEIGHT = 299
LR = 1e-3
EPOCHS = 10
choices = deque([], maxlen=5)
hl_hist = 250
choice_hist = deque([], maxlen=hl_hist)
##########################################################
# load the user configs
with open('conf.json') as f:
config = json.load(f)
# config variables
model_name = config["model"]
weights = config["weights"]
include_top = config["include_top"]
train_path = config["train_path"]
test_path = config["test_path"]
features_path = config["features_path"]
labels_path = config["labels_path"]
test_size = config["test_size"]
results = config["results"]
model_path = config["model_path"]
seed = config["seed"]
classifier_path = config["classifier_path"]
# load the trained logistic regression classifier
print ("[INFO] loading the classifier...")
classifier = pickle.load(open(classifier_path, 'rb'))
#########################################################################
w = [1,0,0,0,0,0,0,0,0]
s = [0,1,0,0,0,0,0,0,0]
a = [0,0,1,0,0,0,0,0,0]
d = [0,0,0,1,0,0,0,0,0]
wa = [0,0,0,0,1,0,0,0,0]
wd = [0,0,0,0,0,1,0,0,0]
sa = [0,0,0,0,0,0,1,0,0]
sd = [0,0,0,0,0,0,0,1,0]
nk = [0,0,0,0,0,0,0,0,1]
t_time = 0.25
def straight():
PressKey(W)
ReleaseKey(A)
ReleaseKey(D)
ReleaseKey(S)
pywinauto.mouse.click(button='left', coords=(776, 491))
def left():
if random.randrange(0,3) == 1:
PressKey(W)
pywinauto.mouse.click(button='left', coords=(776, 491))
else:
ReleaseKey(W)
PressKey(A)
ReleaseKey(S)
ReleaseKey(D)
pywinauto.mouse.click(button='left', coords=(776, 491))
#ReleaseKey(S)
def right():
if random.randrange(0,3) == 1:
PressKey(W)
pywinauto.mouse.click(button='left', coords=(776, 491))
else:
ReleaseKey(W)
PressKey(D)
ReleaseKey(A)
ReleaseKey(S)
pywinauto.mouse.click(button='left', coords=(776, 491))
def reverse():
PressKey(S)
ReleaseKey(A)
ReleaseKey(W)
ReleaseKey(D)
pywinauto.mouse.click(button='left', coords=(776, 491))
def forward_left():
PressKey(W)
PressKey(A)
ReleaseKey(D)
ReleaseKey(S)
pywinauto.mouse.click(button='left', coords=(776, 491))
def forward_right():
PressKey(W)
PressKey(D)
ReleaseKey(A)
ReleaseKey(S)
pywinauto.mouse.click(button='left', coords=(776, 491))
def reverse_left():
PressKey(S)
PressKey(A)
ReleaseKey(W)
ReleaseKey(D)
pywinauto.mouse.click(button='left', coords=(776, 491))
def reverse_right():
PressKey(S)
PressKey(D)
ReleaseKey(W)
ReleaseKey(A)
pywinauto.mouse.click(button='left', coords=(776, 491))
def no_keys():
if random.randrange(0,3) == 1:
PressKey(W)
pywinauto.mouse.click(button='left', coords=(776, 491))
else:
ReleaseKey(W)
ReleaseKey(A)
ReleaseKey(S)
ReleaseKey(D)
pywinauto.mouse.click(button='left', coords=(776, 491))
############################################################
base_model = InceptionV3(include_top=include_top, weights=weights, input_tensor=Input(shape=(299,299,3)))
model = Model(input=base_model.input, output=base_model.layers[-1].output)
image_size = (299, 299)
train_labels = os.listdir(train_path)
# get all the test images paths
test_images = os.listdir(test_path)
#######################################################################################
#model = googlenet(WIDTH, HEIGHT, 3, LR, output=9)
MODEL_NAME = ''
#model.load(MODEL_NAME)
print('We have loaded a previous model!!!!')
def main():
last_time = time.time()
for i in list(range(4))[::-1]:
print(i+1)
time.sleep(1)
paused = False
mode_choice = 0
screen = grab_screen(region=(0,40,GAME_WIDTH,GAME_HEIGHT+40))
screen = cv2.cvtColor(screen, cv2.COLOR_BGR2RGB)
prev = cv2.resize(screen, (WIDTH,HEIGHT))
t_minus = prev
t_now = prev
t_plus = prev
while(True):
if not paused:
screen = grab_screen(region=(0,40,GAME_WIDTH,GAME_HEIGHT+40))
screen = cv2.cvtColor(screen, cv2.COLOR_BGR2RGB)
last_time = time.time()
screen = cv2.resize(screen, (WIDTH,HEIGHT))
delta_count_last = motion_detection(t_minus, t_now, t_plus)
t_minus = t_now
t_now = t_plus
t_plus = screen
t_plus = cv2.blur(t_plus,(4,4))
#prediction = model.predict([screen.reshape(WIDTH,HEIGHT,3)])[0]
#prediction = np.array(prediction) * np.array([4.5, 0.1, 0.1, 0.1, 1.8, 1.8, 0.5, 0.5, 0.2])
###############################################
#img = image.load_img(screen, target_size=image_size)
#x = image.img_to_array(img)
x = np.expand_dims(screen, axis=0)
x = preprocess_input(x)
feature = model.predict(x)
flat = feature.flatten()
flat = np.expand_dims(flat, axis=0)
preds = classifier.predict(flat)
prediction = train_labels[preds[0]]
###############################################################################
mode_choice = prediction
if mode_choice == 'straight':
straight()
choice_picked = 'straight'
elif mode_choice == 'reverse':
reverse()
choice_picked = 'reverse'
elif mode_choice == 'left':
left()
choice_picked = 'left'
elif mode_choice == 'right':
right()
choice_picked = 'right'
elif mode_choice == 'forward+left':
forward_left()
choice_picked = 'forward+left'
elif mode_choice == 'forward+right':
forward_right()
choice_picked = 'forward+right'
elif mode_choice == 'reverse+left':
reverse_left()
choice_picked = 'reverse+left'
elif mode_choice == 'reverse+right':
reverse_right()
choice_picked = 'reverse+right'
elif mode_choice == 'nokeys':
no_keys()
choice_picked = 'nokeys'
motion_log.append(delta_count_last)
motion_avg = round(mean(motion_log),3)
print('loop took {} seconds. Motion: {}. Choice: {}'.format( round(time.time()-last_time, 3) , motion_avg, choice_picked))
if motion_avg < motion_req and len(motion_log) >= log_len:
print('WERE PROBABLY STUCK FFS, initiating some evasive maneuvers.')
# 0 = reverse straight, turn left out
# 1 = reverse straight, turn right out
# 2 = reverse left, turn right out
# 3 = reverse right, turn left out
quick_choice = random.randrange(0,4)
if quick_choice == 0:
reverse()
time.sleep(random.uniform(1,2))
forward_left()
time.sleep(random.uniform(1,2))
elif quick_choice == 1:
reverse()
time.sleep(random.uniform(1,2))
forward_right()
time.sleep(random.uniform(1,2))
elif quick_choice == 2:
reverse_left()
time.sleep(random.uniform(1,2))
forward_right()
time.sleep(random.uniform(1,2))
elif quick_choice == 3:
reverse_right()
time.sleep(random.uniform(1,2))
forward_left()
time.sleep(random.uniform(1,2))
for i in range(log_len-2):
del motion_log[0]
keys = key_check()
# p pauses game and can get annoying.
if 'T' in keys:
if paused:
paused = False
time.sleep(1)
else:
paused = True
ReleaseKey(A)
ReleaseKey(W)
ReleaseKey(D)
time.sleep(1)
main()