Skip to content

Commit 0cba774

Browse files
authored
Update README.md
1 parent 3f1963b commit 0cba774

File tree

1 file changed

+33
-27
lines changed

1 file changed

+33
-27
lines changed

README.md

Lines changed: 33 additions & 27 deletions
Original file line numberDiff line numberDiff line change
@@ -19,12 +19,13 @@ Q-stack
1919
Q-stack is a stack of codes for dedicated pre- and post-processing tasks for Quantum Machine Learning (QML). It is a work in progress. Stay tuned for updates!
2020

2121
For now, we link to the relevant packages that will be incorporated (among others):
22-
- https://github.com/lcmd-epfl/azo-xcite-tools
23-
- https://github.com/lcmd-epfl/SPAHM
24-
- https://github.com/lcmd-epfl/RHO-Decomposition
25-
- https://github.com/lcmd-epfl/ml-density
26-
- https://github.com/lcmd-epfl/OTPD-basis
27-
22+
- [x] https://github.com/lcmd-epfl/azo-xcite-tools
23+
- [x] https://github.com/lcmd-epfl/SPAHM
24+
- [x] https://github.com/lcmd-epfl/RHO-Decomposition
25+
- [ ] https://github.com/lcmd-epfl/ml-density
26+
- [x] https://github.com/lcmd-epfl/OTPD-basis
27+
- [x] https://github.com/lcmd-epfl/b2r2-reaction-rep
28+
2829
## Install [](#contents)
2930

3031
The installation of the library for python use can be done executing the following commands:
@@ -51,40 +52,45 @@ python example_opt.py
5152
```
5253
python example_SPAHM.py
5354
```
54-
- An example for the structure-based reaction representations (B2R2 and SLATMd) will follow shortly
55+
- An example for the structure-based reaction representations ($B^2R^2$ and $\mathrm{SLATM}_d$) will follow shortly
5556

5657

5758
## References [](#contents)
5859

5960
* A. Fabrizio, A. Grisafi, B. Meyer, M. Ceriotti, and C. Corminboeuf,
60-
“Electron density learning of non-covalent systems”,
61-
Chem. Sci. **10**, 9492 (2019)
62-
[![DOI](https://img.shields.io/badge/DOI-10.1039%2FC9SC02696G-blue)](https://doi.org/10.1039/C9SC02696G)
61+
“Electron density learning of non-covalent systems”,
62+
Chem. Sci. **10**, 9492 (2019)
63+
[![DOI](https://img.shields.io/badge/DOI-10.1039%2FC9SC02696G-blue)](https://doi.org/10.1039/C9SC02696G)
6364

6465
* A. Fabrizio, K. R. Briling, D. D. Girardier, and C. Corminboeuf,
65-
“Learning on-top: regressing the on-top pair density for real-space visualization of electron correlation”,
66-
J. Chem. Phys. **153**, 204111 (2020)
67-
[![DOI](https://img.shields.io/badge/DOI-10.1063%2F5.0033326-blue)](https://doi.org/10.1063/5.0033326)
66+
“Learning on-top: regressing the on-top pair density for real-space visualization of electron correlation”,
67+
J. Chem. Phys. **153**, 204111 (2020)
68+
[![DOI](https://img.shields.io/badge/DOI-10.1063%2F5.0033326-blue)](https://doi.org/10.1063/5.0033326)
6869

6970
* S. Vela, A. Fabrizio, K. R. Briling, and C. Corminboeuf,
70-
“Machine-learning the transition density of the productive excited states of azo-dyes”
71-
J. Phys. Chem. Lett. **12**, 5957–5962 (2021).
72-
[![DOI](https://img.shields.io/badge/DOI-10.1021%2Facs.jpclett.1c01425-blue)](https://doi.org/10.1021/acs.jpclett.1c01425)
71+
“Machine-learning the transition density of the productive excited states of azo-dyes”
72+
J. Phys. Chem. Lett. **12**, 5957–5962 (2021)
73+
[![DOI](https://img.shields.io/badge/DOI-10.1021%2Facs.jpclett.1c01425-blue)](https://doi.org/10.1021/acs.jpclett.1c01425)
7374

7475
* K. R. Briling, A. Fabrizio, and C. Corminboeuf,
75-
“Impact of quantum-chemical metrics on the machine learning prediction of electron density”,
76-
J. Chem. Phys. **155**, 024107 (2021)
77-
[![DOI](https://img.shields.io/badge/DOI-10.1063/5.0055393-blue)](https://doi.org/10.1063/5.0055393)
76+
“Impact of quantum-chemical metrics on the machine learning prediction of electron density”,
77+
J. Chem. Phys. **155**, 024107 (2021)
78+
[![DOI](https://img.shields.io/badge/DOI-10.1063/5.0055393-blue)](https://doi.org/10.1063/5.0055393)
7879

7980
* A. Fabrizio, K. R. Briling, and C. Corminboeuf,
80-
“SPAHM: the Spectrum of Approximated Hamiltonian Matrices representations”,
81-
Digital Discovery, *1*, 286–294 (2022)
82-
[![DOI](https://img.shields.io/badge/DOI-10.1039/D1DD00050K-blue)](https://doi.org/10.1039/D1DD00050K)
83-
84-
* P. van Gerwen, A. Fabrizio, M. Wodrich and C. Corminboeuf,
85-
"Physics-based representations for machine learning properties of chemical reactions",
86-
Machine Learning: Science and Technology, **3**, 045005 (2022)
87-
[![DOI](https://img.shields.io/badge/DOI-10.1088%2F2632-2153%2Fac8f1a?color=blue)](https://doi.org/10.1088/2632-2153/ac8f1a)
81+
“SPAHM: the Spectrum of Approximated Hamiltonian Matrices representations”,
82+
Digital Discovery **1**, 286–294 (2022)
83+
[![DOI](https://img.shields.io/badge/DOI-10.1039/D1DD00050K-blue)](https://doi.org/10.1039/D1DD00050K)
84+
85+
* K. R. Briling, Y. Calvino Alonso, A. Fabrizio, and C. Corminboeuf,
86+
“SPAHM(a,b): Encoding the Density Information from Guess Hamiltonian in Quantum Machine Learning Representations”,
87+
J. Chem. Theory Comput. **20**, 1108–1117 (2024)
88+
[![DOI](https://img.shields.io/badge/DOI-10.1021/acs.jctc.3c01040-blue)](https://doi.org/10.1021/acs.jctc.3c01040)
89+
90+
* P. van Gerwen, A. Fabrizio, M. Wodrich, and C. Corminboeuf,
91+
“Physics-based representations for machine learning properties of chemical reactions”,
92+
Mach. Learn.: Sci. Technol. **3**, 045005 (2022)
93+
[![DOI](https://img.shields.io/badge/DOI-10.1088/2632--2153/ac8f1a-blue)](https://doi.org/10.1088/2632-2153/ac8f1a)
8894

8995

9096
## Acknowledgements [](#contents)

0 commit comments

Comments
 (0)