@@ -19,12 +19,13 @@ Q-stack
19
19
Q-stack is a stack of codes for dedicated pre- and post-processing tasks for Quantum Machine Learning (QML). It is a work in progress. Stay tuned for updates!
20
20
21
21
For now, we link to the relevant packages that will be incorporated (among others):
22
- - https://github.com/lcmd-epfl/azo-xcite-tools
23
- - https://github.com/lcmd-epfl/SPAHM
24
- - https://github.com/lcmd-epfl/RHO-Decomposition
25
- - https://github.com/lcmd-epfl/ml-density
26
- - https://github.com/lcmd-epfl/OTPD-basis
27
-
22
+ - [x] https://github.com/lcmd-epfl/azo-xcite-tools
23
+ - [x] https://github.com/lcmd-epfl/SPAHM
24
+ - [x] https://github.com/lcmd-epfl/RHO-Decomposition
25
+ - [ ] https://github.com/lcmd-epfl/ml-density
26
+ - [x] https://github.com/lcmd-epfl/OTPD-basis
27
+ - [x] https://github.com/lcmd-epfl/b2r2-reaction-rep
28
+
28
29
## Install [ ↑] ( #contents )
29
30
30
31
The installation of the library for python use can be done executing the following commands:
@@ -51,40 +52,45 @@ python example_opt.py
51
52
```
52
53
python example_SPAHM.py
53
54
```
54
- - An example for the structure-based reaction representations (B2R2 and SLATMd ) will follow shortly
55
+ - An example for the structure-based reaction representations ($B^2R^2$ and $\mathrm{SLATM} _ d$ ) will follow shortly
55
56
56
57
57
58
## References [ ↑] ( #contents )
58
59
59
60
* A. Fabrizio, A. Grisafi, B. Meyer, M. Ceriotti, and C. Corminboeuf,
60
- “Electron density learning of non-covalent systems”,
61
- Chem. Sci. ** 10** , 9492 (2019)
62
- [ ![ DOI] ( https://img.shields.io/badge/DOI-10.1039%2FC9SC02696G-blue )] ( https://doi.org/10.1039/C9SC02696G )
61
+ “Electron density learning of non-covalent systems”,
62
+ Chem. Sci. ** 10** , 9492 (2019)
63
+ [ ![ DOI] ( https://img.shields.io/badge/DOI-10.1039%2FC9SC02696G-blue )] ( https://doi.org/10.1039/C9SC02696G )
63
64
64
65
* A. Fabrizio, K. R. Briling, D. D. Girardier, and C. Corminboeuf,
65
- “Learning on-top: regressing the on-top pair density for real-space visualization of electron correlation”,
66
- J. Chem. Phys. ** 153** , 204111 (2020)
67
- [ ![ DOI] ( https://img.shields.io/badge/DOI-10.1063%2F5.0033326-blue )] ( https://doi.org/10.1063/5.0033326 )
66
+ “Learning on-top: regressing the on-top pair density for real-space visualization of electron correlation”,
67
+ J. Chem. Phys. ** 153** , 204111 (2020)
68
+ [ ![ DOI] ( https://img.shields.io/badge/DOI-10.1063%2F5.0033326-blue )] ( https://doi.org/10.1063/5.0033326 )
68
69
69
70
* S. Vela, A. Fabrizio, K. R. Briling, and C. Corminboeuf,
70
- “Machine-learning the transition density of the productive excited states of azo-dyes”
71
- J. Phys. Chem. Lett. ** 12** , 5957–5962 (2021).
72
- [ ![ DOI] ( https://img.shields.io/badge/DOI-10.1021%2Facs.jpclett.1c01425-blue )] ( https://doi.org/10.1021/acs.jpclett.1c01425 )
71
+ “Machine-learning the transition density of the productive excited states of azo-dyes”
72
+ J. Phys. Chem. Lett. ** 12** , 5957–5962 (2021)
73
+ [ ![ DOI] ( https://img.shields.io/badge/DOI-10.1021%2Facs.jpclett.1c01425-blue )] ( https://doi.org/10.1021/acs.jpclett.1c01425 )
73
74
74
75
* K. R. Briling, A. Fabrizio, and C. Corminboeuf,
75
- “Impact of quantum-chemical metrics on the machine learning prediction of electron density”,
76
- J. Chem. Phys. ** 155** , 024107 (2021)
77
- [ ![ DOI] ( https://img.shields.io/badge/DOI-10.1063/5.0055393-blue )] ( https://doi.org/10.1063/5.0055393 )
76
+ “Impact of quantum-chemical metrics on the machine learning prediction of electron density”,
77
+ J. Chem. Phys. ** 155** , 024107 (2021)
78
+ [ ![ DOI] ( https://img.shields.io/badge/DOI-10.1063/5.0055393-blue )] ( https://doi.org/10.1063/5.0055393 )
78
79
79
80
* A. Fabrizio, K. R. Briling, and C. Corminboeuf,
80
- “SPAHM: the Spectrum of Approximated Hamiltonian Matrices representations”,
81
- Digital Discovery, * 1* , 286–294 (2022)
82
- [ ![ DOI] ( https://img.shields.io/badge/DOI-10.1039/D1DD00050K-blue )] ( https://doi.org/10.1039/D1DD00050K )
83
-
84
- * P. van Gerwen, A. Fabrizio, M. Wodrich and C. Corminboeuf,
85
- "Physics-based representations for machine learning properties of chemical reactions",
86
- Machine Learning: Science and Technology, ** 3** , 045005 (2022)
87
- [ ![ DOI] ( https://img.shields.io/badge/DOI-10.1088%2F2632-2153%2Fac8f1a?color=blue )] ( https://doi.org/10.1088/2632-2153/ac8f1a )
81
+ “SPAHM: the Spectrum of Approximated Hamiltonian Matrices representations”,
82
+ Digital Discovery ** 1** , 286–294 (2022)
83
+ [ ![ DOI] ( https://img.shields.io/badge/DOI-10.1039/D1DD00050K-blue )] ( https://doi.org/10.1039/D1DD00050K )
84
+
85
+ * K. R. Briling, Y. Calvino Alonso, A. Fabrizio, and C. Corminboeuf,
86
+ “SPAHM(a,b): Encoding the Density Information from Guess Hamiltonian in Quantum Machine Learning Representations”,
87
+ J. Chem. Theory Comput. ** 20** , 1108–1117 (2024)
88
+ [ ![ DOI] ( https://img.shields.io/badge/DOI-10.1021/acs.jctc.3c01040-blue )] ( https://doi.org/10.1021/acs.jctc.3c01040 )
89
+
90
+ * P. van Gerwen, A. Fabrizio, M. Wodrich, and C. Corminboeuf,
91
+ “Physics-based representations for machine learning properties of chemical reactions”,
92
+ Mach. Learn.: Sci. Technol. ** 3** , 045005 (2022)
93
+ [ ![ DOI] ( https://img.shields.io/badge/DOI-10.1088/2632--2153/ac8f1a-blue )] ( https://doi.org/10.1088/2632-2153/ac8f1a )
88
94
89
95
90
96
## Acknowledgements [ ↑] ( #contents )
0 commit comments