-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgenerate_layerwise_benchmarks.py
48 lines (38 loc) · 1.68 KB
/
generate_layerwise_benchmarks.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
import os
import sys
import argparse
import random
import time
import torch
import torch.nn as nn
import torchvision
import pymi
from pymi import ModuleInstrumentation as mi
def run_layerwise_benchmark(network_name, batch_size, iterations, is_gpu_available):
print ("INFO: Benchmark will be run with following details : ")
print ("Network : {}, Batchsize : {}, Iterations : {}".format(network_name, batch_size, iterations))
net = torchvision.models.alexnet()
input_size = [1, 3, 224, 224]
is_debug = True
layer_timer = mi.PyModuleInstrumentation(net, input_size, iterations, is_debug)
net_data = layer_timer.generate_layerwise_profile_info()
print ("OK: Finished generating layerwise benchmark for network : {}".format(network_name))
layer_timer.generate_statistics(net_data)
def main():
network_name = args.network
batch_size = args.batch_size
iterations = args.iterations
is_gpu_available = False
if torch.cuda.is_available():
print ("INFO: GPU is available for running benchmark, switching to use GPU")
is_gpu_available = True
else:
print ("INFO: GPU not available, running using CPU.")
run_layerwise_benchmark(network_name, batch_size, iterations, is_gpu_available)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--network', type=str, required=True, default='resnet50', help="Torchvision network name")
parser.add_argument('--batch-size', type=int, required=False, default=64, help="Batchsize of the model.")
parser.add_argument('--iterations', type=int, required=False, default=10, help="Number of iterations to run;")
args = parser.parse_args()
main()