-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathutil.py
90 lines (71 loc) · 3.77 KB
/
util.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
import abc
import warnings
import numpy as np
import torch
def ece(predicted_probabilities: np.ndarray, labels: np.ndarray, n_bins: int = 30) -> float:
"""
Computes the Expected Calibration Error (ECE).
Many options are possible; in this implementation, we provide a simple version.
Using a uniform binning scheme on the full range of probabilities, zero
to one, we bin the probabilities of the predicted label only (ignoring
all other probabilities). For the ith bin, we compute the avg predicted
probability, p_i, and the bin's total accuracy, a_i.
We then compute the ith calibration error of the bin, |p_i - a_i|.
The final returned value is the weighted average of calibration errors of each bin.
:param predicted_probabilities: Predicted probabilities, float array of shape (num_samples, num_classes)
:param labels: True labels, int tensor of shape (num_samples,) with each entry in {0, ..., num_classes - 1}
:param n_bins: Number of bins for histogram binning
:return: ECE score as a float
"""
num_samples, num_classes = predicted_probabilities.shape
# Predictions are the classes with highest probability
predictions = np.argmax(predicted_probabilities, axis=1)
prediction_confidences = predicted_probabilities[range(num_samples), predictions]
# Use uniform bins on the range of probabilities, i.e. closed interval [0.,1.]
bin_upper_edges = np.histogram_bin_edges([], bins=n_bins, range=(0., 1.))
bin_upper_edges = bin_upper_edges[1:] # bin_upper_edges[0] = 0.
probs_as_bin_num = np.digitize(prediction_confidences, bin_upper_edges)
sums_per_bin = np.bincount(probs_as_bin_num, minlength=n_bins, weights=prediction_confidences)
sums_per_bin = sums_per_bin.astype(np.float32)
total_per_bin = np.bincount(probs_as_bin_num, minlength=n_bins) \
+ np.finfo(sums_per_bin.dtype).eps # division by zero
avg_prob_per_bin = sums_per_bin / total_per_bin
onehot_labels = np.eye(num_classes)[labels]
accuracies = onehot_labels[range(num_samples), predictions] # accuracies[i] is 0 or 1
accuracies_per_bin = np.bincount(probs_as_bin_num, weights=accuracies, minlength=n_bins) / total_per_bin
prob_of_being_in_a_bin = total_per_bin / float(num_samples)
ece_ret = np.abs(accuracies_per_bin - avg_prob_per_bin) * prob_of_being_in_a_bin
ece_ret = np.sum(ece_ret)
return float(ece_ret)
class ParameterDistribution(torch.nn.Module, metaclass=abc.ABCMeta):
"""
Abstract class that models a distribution over model parameters,
usable for Bayes by backprop.
You can implement this class using any distribution you want
and try out different priors and variational posteriors.
All torch.nn.Parameter that you add in the __init__ method of this class
will automatically be registered and know to PyTorch.
"""
def __init__(self):
super().__init__()
@abc.abstractmethod
def log_likelihood(self, values: torch.Tensor) -> torch.Tensor:
"""
Calculate the log-likelihood of the given values
:param values: Values to calculate the log-likelihood on
:return: Log-likelihood
"""
pass
@abc.abstractmethod
def sample(self) -> torch.Tensor:
"""
Sample from this distribution.
Note that you only need to implement this method for variational posteriors, not priors.
:return: Sample from this distribution. The sample shape depends on your semantics.
"""
pass
def forward(self, values: torch.Tensor) -> torch.Tensor:
# DO NOT USE THIS METHOD
# We only implement it since torch.nn.Module requires a forward method
warnings.warn('ParameterDistribution should not be called! Use its explicit methods!')
return self.log_likelihood(values)