From 257ae8a38ff6f0b66e13ac26476a66d8cce4d184 Mon Sep 17 00:00:00 2001 From: Scott Morrison Date: Sat, 10 Feb 2024 06:48:47 +1100 Subject: [PATCH] chore: classical logic lemmas needed for push_neg (#608) --- Std/Logic.lean | 9 +++++++++ Std/Tactic/Omega/MinNatAbs.lean | 13 +++++++------ 2 files changed, 16 insertions(+), 6 deletions(-) diff --git a/Std/Logic.lean b/Std/Logic.lean index 16270b835e..1917949772 100644 --- a/Std/Logic.lean +++ b/Std/Logic.lean @@ -718,6 +718,15 @@ theorem or_iff_not_imp_left : a ∨ b ↔ (¬a → b) := theorem or_iff_not_imp_right : a ∨ b ↔ (¬b → a) := Decidable.or_iff_not_imp_right +theorem not_imp : ¬(a → b) ↔ a ∧ ¬b := + Decidable.not_imp + +theorem not_and : ¬(a ∧ b) ↔ ¬a ∨ ¬b := + Decidable.not_and + +theorem not_iff : ¬(a ↔ b) ↔ (¬a ↔ b) := + Decidable.not_iff + end Classical /-! ## equality -/ diff --git a/Std/Tactic/Omega/MinNatAbs.lean b/Std/Tactic/Omega/MinNatAbs.lean index 8b50ca63b5..4abba8c467 100644 --- a/Std/Tactic/Omega/MinNatAbs.lean +++ b/Std/Tactic/Omega/MinNatAbs.lean @@ -18,7 +18,6 @@ so we keep it in the `Std/Tactic/Omega` directory -/ -open Classical namespace List @@ -30,6 +29,7 @@ We completely characterize the function via -/ def nonzeroMinimum (xs : List Nat) : Nat := xs.filter (· ≠ 0) |>.minimum? |>.getD 0 +open Classical in @[simp] theorem nonzeroMinimum_eq_zero_iff {xs : List Nat} : xs.nonzeroMinimum = 0 ↔ ∀ x ∈ xs, x = 0 := by simp [nonzeroMinimum, Option.getD_eq_iff, minimum?_eq_none_iff, minimum?_eq_some_iff', @@ -85,13 +85,14 @@ theorem nonzeroMinimum_eq_of_nonzero {xs : List Nat} (h : xs.nonzeroMinimum ≠ theorem nonzeroMinimum_le_iff {xs : List Nat} {y : Nat} : xs.nonzeroMinimum ≤ y ↔ xs.nonzeroMinimum = 0 ∨ ∃ x ∈ xs, x ≤ y ∧ x ≠ 0 := by refine ⟨fun h => ?_, fun h => ?_⟩ - · rw [Decidable.or_iff_not_imp_right] - simp only [ne_eq, not_exists, not_and, not_not, nonzeroMinimum_eq_zero_iff] + · rw [Classical.or_iff_not_imp_right] + simp only [ne_eq, not_exists, not_and, Classical.not_not, nonzeroMinimum_eq_zero_iff] intro w apply nonzeroMinimum_eq_zero_iff.mp - by_cases p : xs.nonzeroMinimum = 0 - · exact p - · exact w _ (nonzeroMinimum_mem p) h + if p : xs.nonzeroMinimum = 0 then + exact p + else + exact w _ (nonzeroMinimum_mem p) h · match h with | .inl h => simp [h] | .inr ⟨x, m, le, ne⟩ => exact Nat.le_trans (nonzeroMinimum_le m ne) le