diff --git a/Batteries.lean b/Batteries.lean index 2fac3bf121..c67ec79b84 100644 --- a/Batteries.lean +++ b/Batteries.lean @@ -39,6 +39,7 @@ import Batteries.Data.Sum import Batteries.Data.Thunk import Batteries.Data.UInt import Batteries.Data.UnionFind +import Batteries.Data.Vector import Batteries.Lean.AttributeExtra import Batteries.Lean.Delaborator import Batteries.Lean.Except diff --git a/Batteries/Data/Vector.lean b/Batteries/Data/Vector.lean new file mode 100644 index 0000000000..f543f121ef --- /dev/null +++ b/Batteries/Data/Vector.lean @@ -0,0 +1,2 @@ +import Batteries.Data.Vector.Basic +import Batteries.Data.Vector.Lemmas diff --git a/Batteries/Data/Vector/Basic.lean b/Batteries/Data/Vector/Basic.lean new file mode 100644 index 0000000000..8e070d93f0 --- /dev/null +++ b/Batteries/Data/Vector/Basic.lean @@ -0,0 +1,322 @@ +/- +Copyright (c) 2024 Shreyas Srinivas. All rights reserved. +Released under Apache 2.0 license as described in the file LICENSE. +Authors: Shreyas Srinivas, François G. Dorais +-/ + +import Batteries.Data.Array +import Batteries.Data.List.Basic +import Batteries.Data.List.Lemmas +import Batteries.Tactic.Lint.Misc + +/-! +## Vectors +`Vector α n` is an array with a statically fixed size `n`. +It combines the benefits of Lean's special support for `Arrays` +that offer `O(1)` accesses and in-place mutations for arrays with no more than one reference, +with static guarantees about the size of the underlying array. +-/ + +namespace Batteries + +/-- `Vector α n` is an `Array α` whose size is statically fixed to `n` -/ +structure Vector (α : Type u) (n : Nat) where + /-- Internally, a vector is stored as an array for fast access -/ + toArray : Array α + /-- `size_eq` fixes the size of `toArray` statically -/ + size_eq : toArray.size = n +deriving Repr, BEq, DecidableEq + +namespace Vector + +/-- Syntax for `Vector α n` -/ +syntax "#v[" withoutPosition(sepBy(term, ", ")) "]" : term + +open Lean in +macro_rules + | `(#v[ $elems,* ]) => `(Vector.mk (n := $(quote elems.getElems.size)) #[$elems,*] rfl) + +/-- Custom eliminator for `Vector α n` through `Array α` -/ +@[elab_as_elim] +def elimAsArray {motive : ∀ {n}, Vector α n → Sort u} (mk : ∀ a : Array α, motive ⟨a, rfl⟩) : + {n : Nat} → (v : Vector α n) → motive v + | _, ⟨a, rfl⟩ => mk a + +/-- Custom eliminator for `Vector α n` through `List α` -/ +@[elab_as_elim] +def elimAsList {motive : ∀ {n}, Vector α n → Sort u} (mk : ∀ a : List α, motive ⟨⟨a⟩, rfl⟩) : + {n : Nat} → (v : Vector α n) → motive v + | _, ⟨⟨a⟩, rfl⟩ => mk a + +/-- `Vector.size` gives the size of a vector. -/ +@[nolint unusedArguments] +def size (_ : Vector α n) : Nat := n + +/-- `Vector.empty` produces an empty vector -/ +def empty : Vector α 0 := ⟨Array.empty, rfl⟩ + +/-- Make an empty vector with pre-allocated capacity-/ +def mkEmpty (capacity : Nat) : Vector α 0 := ⟨Array.mkEmpty capacity, rfl⟩ + +/-- Makes a vector of size `n` with all cells containing `v` -/ +def mkVector (n : Nat) (v : α) : Vector α n := ⟨mkArray n v, Array.size_mkArray ..⟩ + +/-- Returns a vector of size `1` with a single element `v` -/ +def singleton (v : α) : Vector α 1 := + mkVector 1 v + +/-- +The Inhabited instance for `Vector α n` with `[Inhabited α]` produces a vector of size `n` +with all its elements equal to the `default` element of type `α` +-/ +instance [Inhabited α] : Inhabited (Vector α n) where + default := mkVector n default + +/-- The list obtained from a vector. -/ +def toList (v : Vector α n) : List α := v.toArray.toList + +/-- nth element of a vector, indexed by a `Fin` type. -/ +def get (v : Vector α n) (i : Fin n) : α := v.toArray.get <| i.cast v.size_eq.symm + +/-- Vector lookup function that takes an index `i` of type `USize` -/ +def uget (v : Vector α n) (i : USize) (h : i.toNat < n) : α := v.toArray.uget i (v.size_eq.symm ▸ h) + +/-- `Vector α n` nstance for the `GetElem` typeclass. -/ +instance : GetElem (Vector α n) Nat α fun _ i => i < n where + getElem := fun x i h => get x ⟨i, h⟩ + +/-- +`getD v i v₀` gets the `iᵗʰ` element of v if valid. +Otherwise it returns `v₀` by default +-/ +def getD (v : Vector α n) (i : Nat) (v₀ : α) : α := Array.getD v.toArray i v₀ + +/-- +`v.back! v` gets the last element of the vector. +panics if `v` is empty. +-/ +abbrev back! [Inhabited α] (v : Vector α n) : α := v[n - 1]! + +/-- +`v.back?` gets the last element `x` of the array as `some x` +if it exists. Else the vector is empty and it returns `none` +-/ +abbrev back? (v : Vector α n) : Option α := v[n-1]? + +/-- `Vector.head` produces the head of a vector -/ +abbrev head (v : Vector α (n+1)) := v[0] + +/-- `push v x` pushes `x` to the end of vector `v` in O(1) time -/ +def push (x : α) (v : Vector α n) : Vector α (n + 1) := + ⟨v.toArray.push x, by simp [v.size_eq]⟩ + +/-- `pop v` returns the vector with the last element removed -/ +def pop (v : Vector α n) : Vector α (n - 1) := + ⟨Array.pop v.toArray, by simp [v.size_eq]⟩ + +/-- +Sets an element in a vector using a Fin index. + +This will perform the update destructively provided that a has a reference count of 1 when called. +-/ +def set (v : Vector α n) (i : Fin n) (x : α) : Vector α n := + ⟨v.toArray.set (Fin.cast v.size_eq.symm i) x, by simp [v.size_eq]⟩ + +/-- +`setN v i h x` sets an element in a vector using a Nat index which is provably valid. +By default a proof by `get_elem_tactic` is provided. + +This will perform the update destructively provided that a has a reference count of 1 when called. +-/ +def setN (v : Vector α n) (i : Nat) (h : i < n := by get_elem_tactic) (x : α) : Vector α n := + v.set ⟨i, h⟩ x + +/-- +Sets an element in a vector, or do nothing if the index is out of bounds. + +This will perform the update destructively provided that a has a reference count of 1 when called. +-/ +def setD (v : Vector α n) (i : Nat) (x : α) : Vector α n := + ⟨v.toArray.setD i x, by simp [v.size_eq]⟩ + +/-- +Sets an element in an array, or panic if the index is out of bounds. + +This will perform the update destructively provided that a has a reference count of 1 when called. +-/ +def set! (v : Vector α n) (i : Nat) (x : α) : Vector α n := + ⟨v.toArray.set! i x, by simp [v.size_eq]⟩ + +/-- Appends a vector to another. -/ +def append : Vector α n → Vector α m → Vector α (n + m) + | ⟨a₁, _⟩, ⟨a₂, _⟩ => ⟨a₁ ++ a₂, by simp [Array.size_append, *]⟩ + +instance : HAppend (Vector α n) (Vector α m) (Vector α (n + m)) where + hAppend := append + +/-- Creates a vector from another with a provably equal length. -/ +protected def cast {n m : Nat} (h : n = m) : Vector α n → Vector α m + | ⟨x, p⟩ => ⟨x, h ▸ p⟩ + +/-- +`extract v start halt` Returns the slice of `v` from indices `start` to `stop` (exclusive). +If `start` is greater or equal to `stop`, the result is empty. +If `stop` is greater than the size of `v`, the size is used instead. +-/ +def extract (v : Vector α n) (start stop : Nat) : Vector α (min stop n - start) := + ⟨Array.extract v.toArray start stop, by simp [v.size_eq]⟩ + +/-- Maps a vector under a function. -/ +def map (f : α → β) (v : Vector α n) : Vector β n := + ⟨v.toArray.map f, by simp [v.size_eq]⟩ + +/-- Maps two vectors under a curried function of two variables. -/ +def zipWith : Vector α n → Vector β n → (α → β → φ) → Vector φ n + | ⟨a, h₁⟩, ⟨b, h₂⟩, f => ⟨Array.zipWith a b f, by simp [Array.size_zipWith, h₁, h₂]⟩ + +/-- Returns a vector of length `n` from a function on `Fin n`. -/ +def ofFn (f : Fin n → α) : Vector α n := ⟨Array.ofFn f, Array.size_ofFn ..⟩ + +/-- +Swaps two entries in a Vector. + +This will perform the update destructively provided that `v` has a reference count of 1 when called. +-/ +def swap (v : Vector α n) (i j : Fin n) : Vector α n := + ⟨v.toArray.swap (Fin.cast v.size_eq.symm i) (Fin.cast v.size_eq.symm j), by simp [v.size_eq]⟩ + +/-- +`swapN v i j hi hj` swaps two `Nat` indexed entries in a `Vector α n`. +Uses `get_elem_tactic` to supply proofs `hi` and `hj` respectively +that the indices `i` and `j` are in range. + +This will perform the update destructively provided that `v` has a reference count of 1 when called. +-/ +def swapN (v : Vector α n) (i j : Nat) + (hi : i < n := by get_elem_tactic) (hj : j < n := by get_elem_tactic) : Vector α n := + v.swap ⟨i, hi⟩ ⟨j, hj⟩ + +/-- +Swaps two entries in a `Vector α n`, or panics if either index is out of bounds. + +This will perform the update destructively provided that `v` has a reference count of 1 when called. +-/ +def swap! (v : Vector α n) (i j : Nat) : Vector α n := + ⟨Array.swap! v.toArray i j, by simp [v.size_eq]⟩ + +/-- +Swaps the entry with index `i : Fin n` in the vector for a new entry. +The old entry is returned with the modified vector. +-/ +def swapAt (v : Vector α n) (i : Fin n) (x : α) : α × Vector α n:= + let res := v.toArray.swapAt (Fin.cast v.size_eq.symm i) x + (res.1, ⟨res.2, by simp [Array.swapAt_def, res, v.size_eq]⟩) + +/-- +Swaps the entry with index `i : Nat` in the vector for a new entry `x`. +The old entry is returned alongwith the modified vector. + +Automatically generates proof of `i < n` with `get_elem_tactic` where feasible. +-/ +def swapAtN (v : Vector α n) (i : Nat) (h : i < n := by get_elem_tactic) (x : α) : α × Vector α n := + swapAt v ⟨i,h⟩ x + +/-- +`swapAt! v i x` swaps out the entry at index `i : Nat` in the vector for `x`, if the index is valid. +Otherwise it panics The old entry is returned with the modified vector. +-/ +@[inline] def swapAt! (v : Vector α n) (i : Nat) (x : α) : α × Vector α n := + if h : i < n then + swapAt v ⟨i, h⟩ x + else + have : Inhabited α := ⟨x⟩ + panic! s!"Index {i} is out of bounds" + +/-- `range n` Returns a vector `#v[1,2,3,...,n-1]` -/ +def range (n : Nat) : Vector Nat n := ⟨Array.range n, Array.size_range ..⟩ + +/-- `shrink v m` shrinks the vector to the first `m` elements if `m < n`. -/ +def shrink (v : Vector α n) (m : Nat) : Vector α (min n m) := + ⟨v.toArray.shrink m, by simp [Array.size_shrink, v.size_eq]⟩ + +/-- Drops `i` elements from a vector of length `n`; we can have `i > n`. -/ +def drop (i : Nat) (v : Vector α n) : Vector α (n - i) := + have : min n n - i = n - i := by rw [Nat.min_self] + Vector.cast this (extract v i n) + +/-- Takes `i` elements from a vector of length `n`; we can have `i > n`. -/ +alias take := shrink + +/-- +`isEqv` takes a given boolean property `p`. It returns `true` +if and only if `p a[i] b[i]` holds true for all valid indices `i`. +-/ +def isEqv (a b : Vector α n) (p : α → α → Bool) : Bool := + Array.isEqv a.toArray b.toArray p + +instance [BEq α] : BEq (Vector α n) := + ⟨fun a b => isEqv a b BEq.beq⟩ + +/-- `reverse v` reverses the vector `v` -/ +def reverse (v : Vector α n) : Vector α n := + ⟨v.toArray.reverse, by simp [v.size_eq]⟩ + +/-- +`feraseIdx v i` removes the element at a given index from a vector using a Fin index. + +This function takes worst case O(n) time because it has to backshift all elements +at positions greater than i. +-/ +def feraseIdx (v : Vector α n) (i : Fin n) : Vector α (n-1) := + ⟨v.toArray.feraseIdx (Fin.cast v.size_eq.symm i), by simp [Array.size_feraseIdx, v.size_eq]⟩ + +/-- `Vector.tail` produces the tail of a vector -/ +@[inline] def tail (v : Vector α n) : Vector α (n-1) := + match n with + | 0 => v + | _ + 1 => Vector.feraseIdx v 0 + +/-- +`eraseIdx! v i` removes the element at position `i` from a vector of length `n` if `i < n`. +Panics otherwise. + +This function takes worst case O(n) time because it has to backshift all elements at positions +greater than i. +-/ +@[inline] def eraseIdx! (v : Vector α n) (i : Nat) : Vector α (n-1) := + if h : i < n then + feraseIdx v ⟨i,h⟩ + else + have : Inhabited (Vector α (n-1)) := ⟨v.tail⟩ + panic! s!"Index {i} is out of bounds" + +/-- +`eraseIdxN v i h` removes the element at position `i` from a vector of length `n`. +`h : i < n` has a default argument `by get_elem_tactic` which tries to supply a proof +that the index is valid. + +This function takes worst case O(n) time because it has to backshift all elements at positions +greater than i. +-/ +abbrev eraseIdxN (v : Vector α n) (i : Nat) (h : i < n := by get_elem_tactic) : Vector α (n - 1) := + v.feraseIdx ⟨i, h⟩ + +/-- +If `x` is an element of vector `v` at index `j`, then `indexOf? v x` returns `some j`. +Otherwise it returns `none`. +-/ +def indexOf? [BEq α] (v : Vector α n) (x : α) : Option (Fin n) := + match Array.indexOf? v.toArray x with + | some res => some (Fin.cast v.size_eq res) + | none => none + +/-- `isPrefixOf as bs` returns true iff vector `as` is a prefix of vector`bs` -/ +def isPrefixOf [BEq α] (as : Vector α m ) (bs : Vector α n) : Bool := + Array.isPrefixOf as.toArray bs.toArray + +/-- `allDiff as i` returns `true` when all elements of `v` are distinct from each other` -/ +def allDiff [BEq α] (as : Vector α n) : Bool := + Array.allDiff as.toArray + +end Vector +end Batteries diff --git a/Batteries/Data/Vector/Lemmas.lean b/Batteries/Data/Vector/Lemmas.lean new file mode 100644 index 0000000000..0a71f0f5f9 --- /dev/null +++ b/Batteries/Data/Vector/Lemmas.lean @@ -0,0 +1,48 @@ +/- +Copyright (c) 2024 Shreyas Srinivas. All rights reserved. +Released under Apache 2.0 license as described in the file LICENSE. +Authors: Shreyas Srinivas, Francois Dorais +-/ + +import Batteries.Data.Vector.Basic +import Batteries.Data.List.Basic +import Batteries.Data.List.Lemmas + +/-! +## Vectors +Lemmas about `Vector α n` +-/ + +namespace Batteries + +namespace Vector + +/-- An `empty` vector maps to a `empty` vector. -/ +@[simp] +theorem map_empty (f : α → β) : map f empty = empty := by with_unfolding_all rfl + + +theorem eq : ∀ v w : Vector α n, v.toArray = w.toArray → v = w + | {..}, {..}, rfl => rfl + +/-- A vector of length `0` is an `empty` vector. -/ +protected theorem eq_empty (v : Vector α 0) : v = empty := by + apply Vector.eq v #v[] + apply Array.eq_empty_of_size_eq_zero v.2 + +/-- +`Vector.ext` is an extensionality theorem. +Vectors `a` and `b` are equal to each other if their elements are equal for each valid index. +-/ +@[ext] +protected theorem ext (a b : Vector α n) (h : (i : Nat) → (_ : i < n) → a[i] = b[i]) : a = b := by + apply Vector.eq + apply Array.ext + · rw [a.size_eq, b.size_eq] + · intro i hi _ + rw [a.size_eq] at hi + exact h i hi + +end Vector + +end Batteries