@@ -140,13 +140,13 @@ instance : has_zero_morphisms (CompHausFiltPseuNormGrp₁.{u}) :=
140
140
zero_comp' := λ _ _ _ f, by { ext, exact f.map_zero } }
141
141
variables {A B C : CompHausFiltPseuNormGrp₁.{u}}
142
142
143
- structure exact_with_constant (f : A ⟶ B) (g : B ⟶ C) (r : ℝ≥0 → ℝ≥0 ) : Prop :=
143
+ structure strongly_exact (f : A ⟶ B) (g : B ⟶ C) (r : ℝ≥0 → ℝ≥0 ) : Prop :=
144
144
(comp_eq_zero : f ≫ g = 0 )
145
145
(cond : ∀ c : ℝ≥0 , g ⁻¹' {0 } ∩ (filtration B c) ⊆ f '' (filtration A (r c)))
146
146
(large : id ≤ r)
147
147
148
- lemma exact_with_constant .exact {f : A ⟶ B} {g : B ⟶ C} {r : ℝ≥0 → ℝ≥0 }
149
- (h : exact_with_constant f g r) :
148
+ lemma strongly_exact .exact {f : A ⟶ B} {g : B ⟶ C} {r : ℝ≥0 → ℝ≥0 }
149
+ (h : strongly_exact f g r) :
150
150
exact ((to_PNG₁ ⋙ PseuNormGrp₁.to_Ab).map f) ((to_PNG₁ ⋙ PseuNormGrp₁.to_Ab).map g) :=
151
151
begin
152
152
rw AddCommGroup.exact_iff',
@@ -168,7 +168,7 @@ instance mono_Filtration_map_app (c₁ c₂ : ℝ≥0) (h : c₁ ⟶ c₂) (M) :
168
168
mono ((Filtration.map h).app M) :=
169
169
by { rw CompHaus.mono_iff_injective, convert injective_cast_le _ _ }
170
170
171
- namespace exact_with_constant
171
+ namespace strongly_exact
172
172
noncomputable theory
173
173
174
174
variables (f : A ⟶ B) (g : B ⟶ C) (r : ℝ≥0 → ℝ≥0 ) (c : ℝ≥0 ) (hrc : c ≤ r c)
@@ -201,7 +201,7 @@ lemma P1_to_P2_comp_fst (hfg : f ≫ g = 0) :
201
201
P1_to_P2 f g hrc hfg ≫ pullback.fst = pullback.fst :=
202
202
pullback.lift_fst _ _ _
203
203
204
- lemma surjective (h : exact_with_constant f g r) :
204
+ lemma surjective (h : strongly_exact f g r) :
205
205
∃ (hfg : f ≫ g = 0 ), ∀ c, function.surjective (P1_to_P2 f g (h.large c) hfg) :=
206
206
begin
207
207
have hfg : f ≫ g = 0 ,
232
232
233
233
lemma of_surjective (hfg : f ≫ g = 0 ) (hr : id ≤ r)
234
234
(h : ∀ c, function.surjective (P1_to_P2 f g (hr c) hfg)) :
235
- exact_with_constant f g r :=
235
+ strongly_exact f g r :=
236
236
begin
237
237
suffices H : ∀ (c : ℝ≥0 ), g ⁻¹' {0 } ∩ filtration B c ⊆ f '' filtration A (r c),
238
238
{ refine ⟨_, H, hr⟩,
@@ -258,7 +258,7 @@ begin
258
258
end
259
259
260
260
lemma iff_surjective :
261
- exact_with_constant f g r ↔
261
+ strongly_exact f g r ↔
262
262
∃ (hfg : f ≫ g = 0 ) (hr : ∀ c, c ≤ r c),
263
263
∀ c, function.surjective (P1_to_P2 f g (hr c) hfg) :=
264
264
begin
@@ -267,9 +267,9 @@ begin
267
267
{ rintro ⟨hfg, hr, h⟩, exact of_surjective f g hfg hr h }
268
268
end
269
269
270
- end exact_with_constant
270
+ end strongly_exact
271
271
272
- namespace exact_with_constant
272
+ namespace strongly_exact
273
273
274
274
variables {J : Type u} [small_category J]
275
275
variables {A' B' C' : J ⥤ CompHausFiltPseuNormGrp₁.{u}}
@@ -486,7 +486,7 @@ begin
486
486
category_theory.limits.has_limit.iso_of_nat_iso_inv_π_assoc],
487
487
erw [limit_flip_comp_lim_iso_limit_comp_lim'_hom_π_π, lim_map_π_assoc],
488
488
simp only [category_theory.category.id_comp,
489
- CompHausFiltPseuNormGrp₁.exact_with_constant .P1_to_P2_nat_trans_app,
489
+ CompHausFiltPseuNormGrp₁.strongly_exact .P1_to_P2_nat_trans_app,
490
490
category_theory.category.assoc],
491
491
erw [lim_map_π],
492
492
dsimp [P1_to_P2],
@@ -513,12 +513,12 @@ end
513
513
514
514
lemma extend {A B C : Fintype.{u} ⥤ CompHausFiltPseuNormGrp₁.{u}}
515
515
(f : A ⟶ B) (g : B ⟶ C) (r : ℝ≥0 → ℝ≥0 )
516
- (hfg : ∀ S, exact_with_constant (f.app S) (g.app S) r) (S : Profinite) :
517
- exact_with_constant
516
+ (hfg : ∀ S, strongly_exact (f.app S) (g.app S) r) (S : Profinite) :
517
+ strongly_exact
518
518
((Profinite.extend_nat_trans f).app S) ((Profinite.extend_nat_trans g).app S) r :=
519
519
begin
520
520
have hr : id ≤ r := (hfg $ Fintype.of punit).large,
521
- rw exact_with_constant .iff_surjective,
521
+ rw strongly_exact .iff_surjective,
522
522
refine ⟨_, hr, _⟩,
523
523
{ rw [← nat_trans.comp_app, ← Profinite.extend_nat_trans_comp],
524
524
apply limit.hom_ext,
@@ -553,7 +553,7 @@ begin
553
553
apply subsingleton.elim,
554
554
end
555
555
556
- end exact_with_constant
556
+ end strongly_exact
557
557
558
558
instance has_zero_nat_trans_CHFPNG₁ {𝒞 : Type *} [category 𝒞]
559
559
(A B : 𝒞 ⥤ CompHausFiltPseuNormGrp₁.{u}) :
@@ -572,31 +572,31 @@ begin
572
572
simp only [nat_trans.comp_app, whisker_left_app, zero_app, zero_comp, comp_zero],
573
573
end
574
574
575
- lemma exact_with_constant_extend_zero_left (A B C : Fintype ⥤ CompHausFiltPseuNormGrp₁.{u})
575
+ lemma strongly_exact_extend_zero_left (A B C : Fintype ⥤ CompHausFiltPseuNormGrp₁.{u})
576
576
(g : B ⟶ C) (r : ℝ≥0 → ℝ≥0 )
577
- (hfg : ∀ S, exact_with_constant (0 : A.obj S ⟶ B.obj S) (g.app S) r) (S : Profinite) :
578
- exact_with_constant (0 : (Profinite.extend A).obj S ⟶ (Profinite.extend B).obj S)
577
+ (hfg : ∀ S, strongly_exact (0 : A.obj S ⟶ B.obj S) (g.app S) r) (S : Profinite) :
578
+ strongly_exact (0 : (Profinite.extend A).obj S ⟶ (Profinite.extend B).obj S)
579
579
((Profinite.extend_nat_trans g).app S) r :=
580
580
begin
581
- have := exact_with_constant .extend (0 : A ⟶ B) g r hfg S,
581
+ have := strongly_exact .extend (0 : A ⟶ B) g r hfg S,
582
582
simpa,
583
583
end
584
584
585
- lemma exact_with_constant_extend_zero_right (A B C : Fintype ⥤ CompHausFiltPseuNormGrp₁.{u})
585
+ lemma strongly_exact_extend_zero_right (A B C : Fintype ⥤ CompHausFiltPseuNormGrp₁.{u})
586
586
(f : A ⟶ B) (r : ℝ≥0 → ℝ≥0 )
587
- (hfg : ∀ S, exact_with_constant (f.app S) (0 : B.obj S ⟶ C.obj S) r) (S : Profinite) :
588
- exact_with_constant ((Profinite.extend_nat_trans f).app S)
587
+ (hfg : ∀ S, strongly_exact (f.app S) (0 : B.obj S ⟶ C.obj S) r) (S : Profinite) :
588
+ strongly_exact ((Profinite.extend_nat_trans f).app S)
589
589
(0 : (Profinite.extend B).obj S ⟶ (Profinite.extend C).obj S) r :=
590
590
begin
591
- have := exact_with_constant .extend f (0 : B ⟶ C) r hfg S,
591
+ have := strongly_exact .extend f (0 : B ⟶ C) r hfg S,
592
592
simpa,
593
593
end
594
594
595
595
variables (C)
596
596
597
- lemma exact_with_constant_of_epi (f : A ⟶ B) (r : ℝ≥0 → ℝ≥0 ) (hr : id ≤ r)
597
+ lemma strongly_exact_of_epi (f : A ⟶ B) (r : ℝ≥0 → ℝ≥0 ) (hr : id ≤ r)
598
598
(hf : ∀ c, filtration B c ⊆ f '' (filtration A (r c))) :
599
- exact_with_constant f (0 : B ⟶ C) r :=
599
+ strongly_exact f (0 : B ⟶ C) r :=
600
600
begin
601
601
refine ⟨_, _, hr⟩,
602
602
{ rw comp_zero },
605
605
606
606
variables (A) {C}
607
607
608
- lemma exact_with_constant_of_mono (g : B ⟶ C) [hg : mono ((to_PNG₁ ⋙ PseuNormGrp₁.to_Ab).map g)] :
609
- exact_with_constant (0 : A ⟶ B) g id :=
608
+ lemma strongly_exact_of_mono (g : B ⟶ C) [hg : mono ((to_PNG₁ ⋙ PseuNormGrp₁.to_Ab).map g)] :
609
+ strongly_exact (0 : A ⟶ B) g id :=
610
610
begin
611
611
refine ⟨_, _, le_rfl⟩,
612
612
{ rw zero_comp },
@@ -654,16 +654,16 @@ begin
654
654
end
655
655
656
656
open comphaus_filtered_pseudo_normed_group
657
- open CompHausFiltPseuNormGrp₁.exact_with_constant (P1 P2 P1_to_P2 P1_to_P2_comp_fst c_le_rc)
657
+ open CompHausFiltPseuNormGrp₁.strongly_exact (P1 P2 P1_to_P2 P1_to_P2_comp_fst c_le_rc)
658
658
659
- lemma exact_of_exact_with_constant {A B C : CompHausFiltPseuNormGrp₁.{u}}
659
+ lemma exact_of_strongly_exact {A B C : CompHausFiltPseuNormGrp₁.{u}}
660
660
(f : A ⟶ B) (g : B ⟶ C) (r : ℝ≥0 → ℝ≥0 )
661
- (hfg : exact_with_constant f g r) :
661
+ (hfg : strongly_exact f g r) :
662
662
exact (to_Condensed.map f) (to_Condensed.map g) :=
663
663
begin
664
664
rw exact_iff_ExtrDisc,
665
665
intro S,
666
- rw exact_with_constant .iff_surjective at hfg,
666
+ rw strongly_exact .iff_surjective at hfg,
667
667
rcases hfg with ⟨hfg, hr, H⟩,
668
668
simp only [subtype.val_eq_coe, to_Condensed_map, CompHausFiltPseuNormGrp.Presheaf.map_app,
669
669
whisker_right_app, Ab.exact_ulift_map],
@@ -704,20 +704,20 @@ end
704
704
by { ext S s x, refl, }
705
705
706
706
lemma mono_to_Condensed_map {A B : CompHausFiltPseuNormGrp₁.{u}}
707
- (f : A ⟶ B) (hf : exact_with_constant (0 : A ⟶ A) f id) :
707
+ (f : A ⟶ B) (hf : strongly_exact (0 : A ⟶ A) f id) :
708
708
mono (to_Condensed.map f) :=
709
709
begin
710
710
refine ((abelian.tfae_mono (to_Condensed.obj A) (to_Condensed.map f)).out 2 0 ).mp _,
711
- have := exact_of_exact_with_constant (0 : A ⟶ A) f id hf,
711
+ have := exact_of_strongly_exact (0 : A ⟶ A) f id hf,
712
712
simpa only [to_Condensed_map_zero],
713
713
end
714
714
715
715
lemma epi_to_Condensed_map {A B : CompHausFiltPseuNormGrp₁.{u}}
716
- (f : A ⟶ B) (r : ℝ≥0 → ℝ≥0 ) (hf : exact_with_constant f (0 : B ⟶ B) r) :
716
+ (f : A ⟶ B) (r : ℝ≥0 → ℝ≥0 ) (hf : strongly_exact f (0 : B ⟶ B) r) :
717
717
epi (to_Condensed.map f) :=
718
718
begin
719
719
refine ((abelian.tfae_epi (to_Condensed.obj B) (to_Condensed.map f)).out 2 0 ).mp _,
720
- have := exact_of_exact_with_constant f (0 : B ⟶ B) r hf,
720
+ have := exact_of_strongly_exact f (0 : B ⟶ B) r hf,
721
721
simpa only [to_Condensed_map_zero]
722
722
end
723
723
0 commit comments