Skip to content

Commit 1d08024

Browse files
author
Etienne
committed
feat: Rename CompactlyGeneratedSpace to UCompactlyGeneratedSpace (#15201)
`CompactlyGeneratedSpace` is defined in `Mathlib.Topology.Category.CompactlyGenerated`. Due to functors considerations, the definition involves a free universe parameter, which is not desirable for topological purposes. Therefore we rename `CompactlyGeneratedSpace` to `UCompactlyGeneratedSpace` so that `CompactlyGeneratedSpace` can be defined as a special case. This was discussed [here](https://leanprover.zulipchat.com/#narrow/stream/116395-maths/topic/Compactly.20generated.20spaces/near/453957506).
1 parent bc33405 commit 1d08024

File tree

2 files changed

+17
-17
lines changed

2 files changed

+17
-17
lines changed

Mathlib/Condensed/TopCatAdjunction.lean

Lines changed: 6 additions & 6 deletions
Original file line numberDiff line numberDiff line change
@@ -136,14 +136,14 @@ instance : topCatToCondensedSet.Faithful := topCatAdjunction.faithful_R_of_epi_c
136136

137137
open CompactlyGenerated
138138

139-
instance (X : CondensedSet.{u}) : CompactlyGeneratedSpace.{u, u+1} X.toTopCat := by
140-
apply compactlyGeneratedSpace_of_continuous_maps
139+
instance (X : CondensedSet.{u}) : UCompactlyGeneratedSpace.{u, u+1} X.toTopCat := by
140+
apply uCompactlyGeneratedSpace_of_continuous_maps
141141
intro Y _ f h
142142
rw [continuous_coinduced_dom, continuous_sigma_iff]
143143
exact fun ⟨S, s⟩ ↦ h S ⟨_, continuous_coinducingCoprod X _⟩
144144

145-
instance (X : CondensedSet.{u}) : CompactlyGeneratedSpace.{u, u+1} (condensedSetToTopCat.obj X) :=
146-
inferInstanceAs (CompactlyGeneratedSpace.{u, u+1} X.toTopCat)
145+
instance (X : CondensedSet.{u}) : UCompactlyGeneratedSpace.{u, u+1} (condensedSetToTopCat.obj X) :=
146+
inferInstanceAs (UCompactlyGeneratedSpace.{u, u+1} X.toTopCat)
147147

148148
/-- The functor from condensed sets to topological spaces lands in compactly generated spaces. -/
149149
def condensedSetToCompactlyGenerated : CondensedSet.{u} ⥤ CompactlyGenerated.{u, u+1} where
@@ -172,12 +172,12 @@ noncomputable def compactlyGeneratedAdjunction :
172172
The counit of the adjunction `condensedSetToCompactlyGenerated ⊣ compactlyGeneratedToCondensedSet`
173173
is a homeomorphism.
174174
-/
175-
def compactlyGeneratedAdjunctionCounitHomeo (X : TopCat.{u+1}) [CompactlyGeneratedSpace.{u} X] :
175+
def compactlyGeneratedAdjunctionCounitHomeo (X : TopCat.{u+1}) [UCompactlyGeneratedSpace.{u} X] :
176176
X.toCondensedSet.toTopCat ≃ₜ X where
177177
toEquiv := topCatAdjunctionCounitEquiv X
178178
continuous_toFun := (topCatAdjunctionCounit X).continuous
179179
continuous_invFun := by
180-
apply continuous_from_compactlyGeneratedSpace
180+
apply continuous_from_uCompactlyGeneratedSpace
181181
exact fun _ _ ↦ continuous_coinducingCoprod X.toCondensedSet _
182182

183183
/--

Mathlib/Topology/Category/CompactlyGenerated.lean

Lines changed: 11 additions & 11 deletions
Original file line numberDiff line numberDiff line change
@@ -50,34 +50,34 @@ A topological space `X` is compactly generated if its topology is finer than (an
5050
the compactly generated topology, i.e. it is coinduced by the continuous maps from compact
5151
Hausdorff spaces to `X`.
5252
-/
53-
class CompactlyGeneratedSpace (X : Type w) [t : TopologicalSpace X] : Prop where
53+
class UCompactlyGeneratedSpace (X : Type w) [t : TopologicalSpace X] : Prop where
5454
/-- The topology of `X` is finer than the compactly generated topology. -/
5555
le_compactlyGenerated : t ≤ compactlyGenerated.{u} X
5656

57-
lemma eq_compactlyGenerated {X : Type w} [t : TopologicalSpace X] [CompactlyGeneratedSpace.{u} X] :
57+
lemma eq_compactlyGenerated {X : Type w} [t : TopologicalSpace X] [UCompactlyGeneratedSpace.{u} X] :
5858
t = compactlyGenerated.{u} X := by
5959
apply le_antisymm
60-
· exact CompactlyGeneratedSpace.le_compactlyGenerated
60+
· exact UCompactlyGeneratedSpace.le_compactlyGenerated
6161
· simp only [compactlyGenerated, ← continuous_iff_coinduced_le, continuous_sigma_iff,
6262
Sigma.forall]
6363
exact fun S f ↦ f.2
6464

6565
instance (X : Type w) [t : TopologicalSpace X] [DiscreteTopology X] :
66-
CompactlyGeneratedSpace.{u} X where
66+
UCompactlyGeneratedSpace.{u} X where
6767
le_compactlyGenerated := by
6868
rw [DiscreteTopology.eq_bot (t := t)]
6969
exact bot_le
7070

71-
lemma continuous_from_compactlyGeneratedSpace {X : Type w} [TopologicalSpace X]
72-
[CompactlyGeneratedSpace.{u} X] {Y : Type*} [TopologicalSpace Y] (f : X → Y)
71+
lemma continuous_from_uCompactlyGeneratedSpace {X : Type w} [TopologicalSpace X]
72+
[UCompactlyGeneratedSpace.{u} X] {Y : Type*} [TopologicalSpace Y] (f : X → Y)
7373
(h : ∀ (S : CompHaus.{u}) (g : C(S, X)), Continuous (f ∘ g)) : Continuous f := by
74-
apply continuous_le_dom CompactlyGeneratedSpace.le_compactlyGenerated
74+
apply continuous_le_dom UCompactlyGeneratedSpace.le_compactlyGenerated
7575
exact continuous_from_compactlyGenerated f h
7676

77-
lemma compactlyGeneratedSpace_of_continuous_maps {X : Type w} [t : TopologicalSpace X]
77+
lemma uCompactlyGeneratedSpace_of_continuous_maps {X : Type w} [t : TopologicalSpace X]
7878
(h : ∀ {Y : Type w} [tY : TopologicalSpace Y] (f : X → Y),
7979
(∀ (S : CompHaus.{u}) (g : C(S, X)), Continuous (f ∘ g)) → Continuous f) :
80-
CompactlyGeneratedSpace.{u} X where
80+
UCompactlyGeneratedSpace.{u} X where
8181
le_compactlyGenerated := by
8282
suffices Continuous[t, compactlyGenerated.{u} X] (id : X → X) by
8383
rwa [← continuous_id_iff_le]
@@ -94,7 +94,7 @@ structure CompactlyGenerated where
9494
/-- The underlying topological space of an object of `CompactlyGenerated`. -/
9595
toTop : TopCat.{w}
9696
/-- The underlying topological space is compactly generated. -/
97-
[is_compactly_generated : CompactlyGeneratedSpace.{u} toTop]
97+
[is_compactly_generated : UCompactlyGeneratedSpace.{u} toTop]
9898

9999
namespace CompactlyGenerated
100100

@@ -112,7 +112,7 @@ instance : Category.{w, w+1} CompactlyGenerated.{u, w} :=
112112
instance : ConcreteCategory.{w} CompactlyGenerated.{u, w} :=
113113
InducedCategory.concreteCategory _
114114

115-
variable (X : Type w) [TopologicalSpace X] [CompactlyGeneratedSpace.{u} X]
115+
variable (X : Type w) [TopologicalSpace X] [UCompactlyGeneratedSpace.{u} X]
116116

117117
/-- Constructor for objects of the category `CompactlyGenerated`. -/
118118
def of : CompactlyGenerated.{u, w} where

0 commit comments

Comments
 (0)