@@ -50,34 +50,34 @@ A topological space `X` is compactly generated if its topology is finer than (an
50
50
the compactly generated topology, i.e. it is coinduced by the continuous maps from compact
51
51
Hausdorff spaces to `X`.
52
52
-/
53
- class CompactlyGeneratedSpace (X : Type w) [t : TopologicalSpace X] : Prop where
53
+ class UCompactlyGeneratedSpace (X : Type w) [t : TopologicalSpace X] : Prop where
54
54
/-- The topology of `X` is finer than the compactly generated topology. -/
55
55
le_compactlyGenerated : t ≤ compactlyGenerated.{u} X
56
56
57
- lemma eq_compactlyGenerated {X : Type w} [t : TopologicalSpace X] [CompactlyGeneratedSpace .{u} X] :
57
+ lemma eq_compactlyGenerated {X : Type w} [t : TopologicalSpace X] [UCompactlyGeneratedSpace .{u} X] :
58
58
t = compactlyGenerated.{u} X := by
59
59
apply le_antisymm
60
- · exact CompactlyGeneratedSpace .le_compactlyGenerated
60
+ · exact UCompactlyGeneratedSpace .le_compactlyGenerated
61
61
· simp only [compactlyGenerated, ← continuous_iff_coinduced_le, continuous_sigma_iff,
62
62
Sigma.forall]
63
63
exact fun S f ↦ f.2
64
64
65
65
instance (X : Type w) [t : TopologicalSpace X] [DiscreteTopology X] :
66
- CompactlyGeneratedSpace .{u} X where
66
+ UCompactlyGeneratedSpace .{u} X where
67
67
le_compactlyGenerated := by
68
68
rw [DiscreteTopology.eq_bot (t := t)]
69
69
exact bot_le
70
70
71
- lemma continuous_from_compactlyGeneratedSpace {X : Type w} [TopologicalSpace X]
72
- [CompactlyGeneratedSpace .{u} X] {Y : Type *} [TopologicalSpace Y] (f : X → Y)
71
+ lemma continuous_from_uCompactlyGeneratedSpace {X : Type w} [TopologicalSpace X]
72
+ [UCompactlyGeneratedSpace .{u} X] {Y : Type *} [TopologicalSpace Y] (f : X → Y)
73
73
(h : ∀ (S : CompHaus.{u}) (g : C(S, X)), Continuous (f ∘ g)) : Continuous f := by
74
- apply continuous_le_dom CompactlyGeneratedSpace .le_compactlyGenerated
74
+ apply continuous_le_dom UCompactlyGeneratedSpace .le_compactlyGenerated
75
75
exact continuous_from_compactlyGenerated f h
76
76
77
- lemma compactlyGeneratedSpace_of_continuous_maps {X : Type w} [t : TopologicalSpace X]
77
+ lemma uCompactlyGeneratedSpace_of_continuous_maps {X : Type w} [t : TopologicalSpace X]
78
78
(h : ∀ {Y : Type w} [tY : TopologicalSpace Y] (f : X → Y),
79
79
(∀ (S : CompHaus.{u}) (g : C(S, X)), Continuous (f ∘ g)) → Continuous f) :
80
- CompactlyGeneratedSpace .{u} X where
80
+ UCompactlyGeneratedSpace .{u} X where
81
81
le_compactlyGenerated := by
82
82
suffices Continuous[t, compactlyGenerated.{u} X] (id : X → X) by
83
83
rwa [← continuous_id_iff_le]
@@ -94,7 +94,7 @@ structure CompactlyGenerated where
94
94
/-- The underlying topological space of an object of `CompactlyGenerated`. -/
95
95
toTop : TopCat.{w}
96
96
/-- The underlying topological space is compactly generated. -/
97
- [is_compactly_generated : CompactlyGeneratedSpace .{u} toTop]
97
+ [is_compactly_generated : UCompactlyGeneratedSpace .{u} toTop]
98
98
99
99
namespace CompactlyGenerated
100
100
@@ -112,7 +112,7 @@ instance : Category.{w, w+1} CompactlyGenerated.{u, w} :=
112
112
instance : ConcreteCategory.{w} CompactlyGenerated.{u, w} :=
113
113
InducedCategory.concreteCategory _
114
114
115
- variable (X : Type w) [TopologicalSpace X] [CompactlyGeneratedSpace .{u} X]
115
+ variable (X : Type w) [TopologicalSpace X] [UCompactlyGeneratedSpace .{u} X]
116
116
117
117
/-- Constructor for objects of the category `CompactlyGenerated`. -/
118
118
def of : CompactlyGenerated.{u, w} where
0 commit comments