From 62479e02b64e29dcbe7e7e2fca3ebdc20a4efb29 Mon Sep 17 00:00:00 2001 From: blizzard_inc Date: Sat, 3 Aug 2024 13:28:20 +0000 Subject: [PATCH] chore: backports for leanprover/lean4#4814 (part 14) (#15406) Co-authored-by: blizzard_inc --- Mathlib/Algebra/MonoidAlgebra/Degree.lean | 15 ++-- Mathlib/Algebra/Star/Subalgebra.lean | 56 +++++++------ Mathlib/LinearAlgebra/Dimension/Basic.lean | 19 ++++- Mathlib/LinearAlgebra/Matrix/ToLin.lean | 12 ++- Mathlib/Topology/AlexandrovDiscrete.lean | 81 ++++++++++--------- .../Topology/Compactness/SigmaCompact.lean | 5 +- 6 files changed, 113 insertions(+), 75 deletions(-) diff --git a/Mathlib/Algebra/MonoidAlgebra/Degree.lean b/Mathlib/Algebra/MonoidAlgebra/Degree.lean index 8f97bb08cbb59..b453e2c04b610 100644 --- a/Mathlib/Algebra/MonoidAlgebra/Degree.lean +++ b/Mathlib/Algebra/MonoidAlgebra/Degree.lean @@ -205,7 +205,7 @@ variable [Semiring R] [Ring R'] section SupDegree -variable [AddZeroClass A] [SemilatticeSup B] [Add B] [OrderBot B] (D : A → B) +variable [SemilatticeSup B] [OrderBot B] (D : A → B) /-- Let `R` be a semiring, let `A` be an `AddZeroClass`, let `B` be an `OrderBot`, and let `D : A → B` be a "degree" function. @@ -246,7 +246,12 @@ theorem supDegree_single (a : A) (r : R) : (single a r).supDegree D = if r = 0 then ⊥ else D a := by split_ifs with hr <;> simp [supDegree_single_ne_zero, hr] -variable {p q : R[A]} +theorem apply_eq_zero_of_not_le_supDegree {p : R[A]} {a : A} (hlt : ¬ D a ≤ p.supDegree D) : + p a = 0 := by + contrapose! hlt + exact Finset.le_sup (Finsupp.mem_support_iff.2 hlt) + +variable [AddZeroClass A] {p q : R[A]} @[simp] theorem supDegree_zero : (0 : R[A]).supDegree D = ⊥ := by simp [supDegree] @@ -256,11 +261,7 @@ theorem ne_zero_of_supDegree_ne_bot : p.supDegree D ≠ ⊥ → p ≠ 0 := mt (f theorem ne_zero_of_not_supDegree_le {b : B} (h : ¬ p.supDegree D ≤ b) : p ≠ 0 := ne_zero_of_supDegree_ne_bot (fun he => h <| he ▸ bot_le) -theorem apply_eq_zero_of_not_le_supDegree {a : A} (hlt : ¬ D a ≤ p.supDegree D) : p a = 0 := by - contrapose! hlt - exact Finset.le_sup (Finsupp.mem_support_iff.2 hlt) - -variable (hadd : ∀ a1 a2, D (a1 + a2) = D a1 + D a2) +variable [Add B] (hadd : ∀ a1 a2, D (a1 + a2) = D a1 + D a2) theorem supDegree_mul_le [CovariantClass B B (· + ·) (· ≤ ·)] [CovariantClass B B (Function.swap (· + ·)) (· ≤ ·)] : diff --git a/Mathlib/Algebra/Star/Subalgebra.lean b/Mathlib/Algebra/Star/Subalgebra.lean index 0bdf61c10ca87..380f87763c95d 100644 --- a/Mathlib/Algebra/Star/Subalgebra.lean +++ b/Mathlib/Algebra/Star/Subalgebra.lean @@ -650,30 +650,11 @@ namespace StarAlgHom open StarSubalgebra StarAlgebra variable {F R A B : Type*} [CommSemiring R] [StarRing R] -variable [Semiring A] [Algebra R A] [StarRing A] [StarModule R A] -variable [Semiring B] [Algebra R B] [StarRing B] [StarModule R B] -variable [FunLike F A B] [AlgHomClass F R A B] [StarAlgHomClass F R A B] (f g : F) +variable [Semiring A] [Algebra R A] [StarRing A] +variable [Semiring B] [Algebra R B] [StarRing B] -/-- The equalizer of two star `R`-algebra homomorphisms. -/ -def equalizer : StarSubalgebra R A := - { toSubalgebra := AlgHom.equalizer (f : A →ₐ[R] B) g - star_mem' := @fun a (ha : f a = g a) => by simpa only [← map_star] using congrArg star ha } --- Porting note: much like `StarSubalgebra.copy` the old proof was broken and hard to fix - -@[simp] -theorem mem_equalizer (x : A) : x ∈ StarAlgHom.equalizer f g ↔ f x = g x := - Iff.rfl - -theorem adjoin_le_equalizer {s : Set A} (h : s.EqOn f g) : adjoin R s ≤ StarAlgHom.equalizer f g := - adjoin_le h - -theorem ext_of_adjoin_eq_top {s : Set A} (h : adjoin R s = ⊤) ⦃f g : F⦄ (hs : s.EqOn f g) : f = g := - DFunLike.ext f g fun _x => StarAlgHom.adjoin_le_equalizer f g hs <| h.symm ▸ trivial - -theorem map_adjoin (f : A →⋆ₐ[R] B) (s : Set A) : - map f (adjoin R s) = adjoin R (f '' s) := - GaloisConnection.l_comm_of_u_comm Set.image_preimage (gc_map_comap f) StarAlgebra.gc - StarAlgebra.gc fun _ => rfl +section +variable [StarModule R A] theorem ext_adjoin {s : Set A} [FunLike F (adjoin R s) B] [AlgHomClass F R (adjoin R s) B] [StarAlgHomClass F R (adjoin R s) B] {f g : F} @@ -696,6 +677,32 @@ theorem ext_adjoin_singleton {a : A} [FunLike F (adjoin R ({a} : Set A)) B] Subtype.ext <| Set.mem_singleton_iff.mp hx).symm ▸ h +variable [FunLike F A B] [AlgHomClass F R A B] [StarAlgHomClass F R A B] (f g : F) + +/-- The equalizer of two star `R`-algebra homomorphisms. -/ +def equalizer : StarSubalgebra R A := + { toSubalgebra := AlgHom.equalizer (f : A →ₐ[R] B) g + star_mem' := @fun a (ha : f a = g a) => by simpa only [← map_star] using congrArg star ha } +-- Porting note: much like `StarSubalgebra.copy` the old proof was broken and hard to fix + +@[simp] +theorem mem_equalizer (x : A) : x ∈ StarAlgHom.equalizer f g ↔ f x = g x := + Iff.rfl + +theorem adjoin_le_equalizer {s : Set A} (h : s.EqOn f g) : adjoin R s ≤ StarAlgHom.equalizer f g := + adjoin_le h + +theorem ext_of_adjoin_eq_top {s : Set A} (h : adjoin R s = ⊤) ⦃f g : F⦄ (hs : s.EqOn f g) : f = g := + DFunLike.ext f g fun _x => StarAlgHom.adjoin_le_equalizer f g hs <| h.symm ▸ trivial + + +variable [StarModule R B] + +theorem map_adjoin (f : A →⋆ₐ[R] B) (s : Set A) : + map f (adjoin R s) = adjoin R (f '' s) := + GaloisConnection.l_comm_of_u_comm Set.image_preimage (gc_map_comap f) StarAlgebra.gc + StarAlgebra.gc fun _ => rfl + /-- Range of a `StarAlgHom` as a star subalgebra. -/ protected def range (φ : A →⋆ₐ[R] B) : StarSubalgebra R B where @@ -706,6 +713,9 @@ theorem range_eq_map_top (φ : A →⋆ₐ[R] B) : φ.range = (⊤ : StarSubalge StarSubalgebra.ext fun x => ⟨by rintro ⟨a, ha⟩; exact ⟨a, by simp, ha⟩, by rintro ⟨a, -, ha⟩; exact ⟨a, ha⟩⟩ +end + +variable [StarModule R B] /-- Restriction of the codomain of a `StarAlgHom` to a star subalgebra containing the range. -/ protected def codRestrict (f : A →⋆ₐ[R] B) (S : StarSubalgebra R B) (hf : ∀ x, f x ∈ S) : A →⋆ₐ[R] S where diff --git a/Mathlib/LinearAlgebra/Dimension/Basic.lean b/Mathlib/LinearAlgebra/Dimension/Basic.lean index 2bc5614a0c0e6..673047ce643a6 100644 --- a/Mathlib/LinearAlgebra/Dimension/Basic.lean +++ b/Mathlib/LinearAlgebra/Dimension/Basic.lean @@ -66,10 +66,9 @@ lemma nonempty_linearIndependent_set : Nonempty {s : Set M // LinearIndependent end -variable [Ring R] [Ring R'] [AddCommGroup M] [AddCommGroup M'] [AddCommGroup M₁] -variable [Module R M] [Module R M'] [Module R M₁] [Module R' M'] [Module R' M₁] namespace LinearIndependent +variable [Ring R] [AddCommGroup M] [Module R M] variable [Nontrivial R] @@ -106,6 +105,10 @@ alias cardinal_le_rank_of_linearIndependent' := LinearIndependent.cardinal_le_ra section SurjectiveInjective section Module +variable [Ring R] [AddCommGroup M] [Module R M] [Ring R'] + +section +variable [AddCommGroup M'] [Module R' M'] /-- If `M / R` and `M' / R'` are modules, `i : R' → R` is a map which sends non-zero elements to non-zero elements, `j : M →+ M'` is an injective group homomorphism, such that the scalar @@ -144,6 +147,10 @@ theorem lift_rank_eq_of_equiv_equiv (i : ZeroHom R R') (j : M ≃+ M') (lift_rank_le_of_surjective_injective i j hi.2 j.injective hc).antisymm <| lift_rank_le_of_injective_injective i j.symm (fun _ _ ↦ hi.1 <| by rwa [i.map_zero]) j.symm.injective fun _ _ ↦ j.symm_apply_eq.2 <| by erw [hc, j.apply_symm_apply] +end + +section +variable [AddCommGroup M₁] [Module R' M₁] /-- The same-universe version of `lift_rank_le_of_injective_injective`. -/ theorem rank_le_of_injective_injective (i : R' → R) (j : M →+ M₁) @@ -165,6 +172,7 @@ theorem rank_eq_of_equiv_equiv (i : ZeroHom R R') (j : M ≃+ M₁) Module.rank R M = Module.rank R' M₁ := by simpa only [lift_id] using lift_rank_eq_of_equiv_equiv i j hi hc +end end Module namespace Algebra @@ -208,7 +216,7 @@ theorem lift_rank_eq_of_equiv_equiv (i : R ≃+* R') (j : S ≃+* S') simp only [RingEquiv.toRingHom_eq_coe, RingHom.coe_comp, RingHom.coe_coe, comp_apply] at this simp only [smul_def, RingEquiv.coe_toAddEquiv, map_mul, ZeroHom.coe_coe, this] -variable {S' : Type v} [CommRing R'] [Ring S'] [Algebra R' S'] +variable {S' : Type v} [Ring S'] [Algebra R' S'] /-- The same-universe version of `Algebra.lift_rank_le_of_injective_injective`. -/ theorem rank_le_of_injective_injective @@ -234,6 +242,11 @@ end Algebra end SurjectiveInjective +variable [Ring R] [AddCommGroup M] [Module R M] + [Ring R'] + [AddCommGroup M'] [AddCommGroup M₁] + [Module R M'] [Module R M₁] [Module R' M'] [Module R' M₁] + section theorem LinearMap.lift_rank_le_of_injective (f : M →ₗ[R] M') (i : Injective f) : diff --git a/Mathlib/LinearAlgebra/Matrix/ToLin.lean b/Mathlib/LinearAlgebra/Matrix/ToLin.lean index a141f343332d0..4ae77f01f8732 100644 --- a/Mathlib/LinearAlgebra/Matrix/ToLin.lean +++ b/Mathlib/LinearAlgebra/Matrix/ToLin.lean @@ -82,10 +82,10 @@ def Matrix.vecMulLinear [Fintype m] (M : Matrix m n R) : (m → R) →ₗ[R] n theorem Matrix.coe_vecMulLinear [Fintype m] (M : Matrix m n R) : (M.vecMulLinear : _ → _) = M.vecMul := rfl -variable [Fintype m] [DecidableEq m] +variable [Fintype m] @[simp] -theorem Matrix.vecMul_stdBasis (M : Matrix m n R) (i j) : +theorem Matrix.vecMul_stdBasis [DecidableEq m] (M : Matrix m n R) (i j) : (LinearMap.stdBasis R (fun _ ↦ R) i 1 ᵥ* M) j = M i j := by have : (∑ i', (if i = i' then 1 else 0) * M i' j) = M i j := by simp_rw [boole_mul, Finset.sum_ite_eq, Finset.mem_univ, if_true] @@ -118,6 +118,9 @@ theorem Matrix.vecMul_injective_iff {R : Type*} [CommRing R] {M : Matrix m n R} ext j simp [vecMul, dotProduct] +section +variable [DecidableEq m] + /-- Linear maps `(m → R) →ₗ[R] (n → R)` are linearly equivalent over `Rᵐᵒᵖ` to `Matrix m n R`, by having matrices act by right multiplication. -/ @@ -140,7 +143,7 @@ def LinearMap.toMatrixRight' : ((m → R) →ₗ[R] n → R) ≃ₗ[Rᵐᵒᵖ] /-- A `Matrix m n R` is linearly equivalent over `Rᵐᵒᵖ` to a linear map `(m → R) →ₗ[R] (n → R)`, by having matrices act by right multiplication. -/ -abbrev Matrix.toLinearMapRight' : Matrix m n R ≃ₗ[Rᵐᵒᵖ] (m → R) →ₗ[R] n → R := +abbrev Matrix.toLinearMapRight' [DecidableEq m] : Matrix m n R ≃ₗ[Rᵐᵒᵖ] (m → R) →ₗ[R] n → R := LinearEquiv.symm LinearMap.toMatrixRight' @[simp] @@ -180,6 +183,7 @@ def Matrix.toLinearEquivRight'OfInv [Fintype n] [DecidableEq n] {M : Matrix m n dsimp only -- Porting note: needed due to non-flat structures rw [← Matrix.toLinearMapRight'_mul_apply, hMM', Matrix.toLinearMapRight'_one, id_apply] } +end end ToMatrixRight /-! @@ -777,7 +781,7 @@ theorem toMatrix_distrib_mul_action_toLinearMap (x : R) : Basis.repr_self, Finsupp.smul_single_one, Finsupp.single_eq_pi_single, Matrix.diagonal_apply, Pi.single_apply] -lemma LinearMap.toMatrix_prodMap [DecidableEq n] [DecidableEq m] [DecidableEq (n ⊕ m)] +lemma LinearMap.toMatrix_prodMap [DecidableEq m] [DecidableEq (n ⊕ m)] (φ₁ : Module.End R M₁) (φ₂ : Module.End R M₂) : toMatrix (v₁.prod v₂) (v₁.prod v₂) (φ₁.prodMap φ₂) = Matrix.fromBlocks (toMatrix v₁ v₁ φ₁) 0 0 (toMatrix v₂ v₂ φ₂) := by diff --git a/Mathlib/Topology/AlexandrovDiscrete.lean b/Mathlib/Topology/AlexandrovDiscrete.lean index ea3c2bbc4d861..a754e4fc9b10d 100644 --- a/Mathlib/Topology/AlexandrovDiscrete.lean +++ b/Mathlib/Topology/AlexandrovDiscrete.lean @@ -48,7 +48,9 @@ class AlexandrovDiscrete (α : Type*) [TopologicalSpace α] : Prop where namespace instead. -/ protected isOpen_sInter : ∀ S : Set (Set α), (∀ s ∈ S, IsOpen s) → IsOpen (⋂₀ S) -variable {ι : Sort*} {κ : ι → Sort*} {α β : Type*} [TopologicalSpace α] [TopologicalSpace β] +variable {ι : Sort*} {κ : ι → Sort*} {α β : Type*} +section +variable [TopologicalSpace α] [TopologicalSpace β] instance DiscreteTopology.toAlexandrovDiscrete [DiscreteTopology α] : AlexandrovDiscrete α where isOpen_sInter _ _ := isOpen_discrete _ @@ -153,7 +155,46 @@ lemma IsOpen.exterior_subset_iff (ht : IsOpen t) : exterior s ⊆ t ↔ s ⊆ t @[simp] lemma exterior_eq_empty : exterior s = ∅ ↔ s = ∅ := ⟨eq_bot_mono subset_exterior, by rintro rfl; exact exterior_empty⟩ -variable [AlexandrovDiscrete α] [AlexandrovDiscrete β] +lemma Inducing.alexandrovDiscrete [AlexandrovDiscrete α] {f : β → α} (h : Inducing f) : + AlexandrovDiscrete β where + isOpen_sInter S hS := by + simp_rw [h.isOpen_iff] at hS ⊢ + choose U hU htU using hS + refine ⟨_, isOpen_iInter₂ hU, ?_⟩ + simp_rw [preimage_iInter, htU, sInter_eq_biInter] + +lemma IsOpen.exterior_subset (ht : IsOpen t) : exterior s ⊆ t ↔ s ⊆ t := + ⟨subset_exterior.trans, fun h ↦ exterior_minimal h ht⟩ + +lemma Set.Finite.isCompact_exterior (hs : s.Finite) : IsCompact (exterior s) := by + classical + refine isCompact_of_finite_subcover fun f hf hsf ↦ ?_ + choose g hg using fun a (ha : a ∈ exterior s) ↦ mem_iUnion.1 (hsf ha) + refine ⟨hs.toFinset.attach.image fun a ↦ + g a.1 <| subset_exterior <| (Finite.mem_toFinset _).1 a.2, + (isOpen_iUnion fun i ↦ isOpen_iUnion ?_).exterior_subset.2 ?_⟩ + · exact fun _ ↦ hf _ + refine fun a ha ↦ mem_iUnion₂.2 ⟨_, ?_, hg _ <| subset_exterior ha⟩ + simp only [Finset.mem_image, Finset.mem_attach, true_and, Subtype.exists, Finite.mem_toFinset] + exact ⟨a, ha, rfl⟩ +end + +lemma AlexandrovDiscrete.sup {t₁ t₂ : TopologicalSpace α} (_ : @AlexandrovDiscrete α t₁) + (_ : @AlexandrovDiscrete α t₂) : + @AlexandrovDiscrete α (t₁ ⊔ t₂) := + @AlexandrovDiscrete.mk α (t₁ ⊔ t₂) fun _S hS ↦ + ⟨@isOpen_sInter _ t₁ _ _ fun _s hs ↦ (hS _ hs).1, isOpen_sInter fun _s hs ↦ (hS _ hs).2⟩ + +lemma alexandrovDiscrete_iSup {t : ι → TopologicalSpace α} (_ : ∀ i, @AlexandrovDiscrete α (t i)) : + @AlexandrovDiscrete α (⨆ i, t i) := + @AlexandrovDiscrete.mk α (⨆ i, t i) + fun _S hS ↦ isOpen_iSup_iff.2 + fun i ↦ @isOpen_sInter _ (t i) _ _ + fun _s hs ↦ isOpen_iSup_iff.1 (hS _ hs) _ + +section +variable [TopologicalSpace α] [TopologicalSpace β] [AlexandrovDiscrete α] [AlexandrovDiscrete β] + {s t : Set α} {a x y : α} @[simp] lemma isOpen_exterior : IsOpen (exterior s) := by rw [exterior_def]; exact isOpen_sInter fun _ ↦ And.left @@ -176,9 +217,6 @@ lemma exterior_subset_iff_mem_nhdsSet : exterior s ⊆ t ↔ t ∈ 𝓝ˢ s := lemma exterior_singleton_subset_iff_mem_nhds : exterior {a} ⊆ t ↔ t ∈ 𝓝 a := by simp [exterior_subset_iff_mem_nhdsSet] -lemma IsOpen.exterior_subset (ht : IsOpen t) : exterior s ⊆ t ↔ s ⊆ t := - ⟨subset_exterior.trans, fun h ↦ exterior_minimal h ht⟩ - lemma gc_exterior_interior : GaloisConnection (exterior : Set α → Set α) interior := fun s t ↦ by simp [exterior_subset_iff, subset_interior_iff] @@ -210,42 +248,11 @@ lemma isOpen_iff_forall_specializes : IsOpen s ↔ ∀ x y, x ⤳ y → y ∈ s refine ⟨_, fun b hb ↦ hs _ _ ?_ ha, isOpen_exterior, subset_exterior <| mem_singleton _⟩ rwa [isOpen_exterior.exterior_subset, singleton_subset_iff] -lemma Set.Finite.isCompact_exterior (hs : s.Finite) : IsCompact (exterior s) := by - classical - refine isCompact_of_finite_subcover fun f hf hsf ↦ ?_ - choose g hg using fun a (ha : a ∈ exterior s) ↦ mem_iUnion.1 (hsf ha) - refine ⟨hs.toFinset.attach.image fun a ↦ - g a.1 <| subset_exterior <| (Finite.mem_toFinset _).1 a.2, - (isOpen_iUnion fun i ↦ isOpen_iUnion ?_).exterior_subset.2 ?_⟩ - · exact fun _ ↦ hf _ - refine fun a ha ↦ mem_iUnion₂.2 ⟨_, ?_, hg _ <| subset_exterior ha⟩ - simp only [Finset.mem_image, Finset.mem_attach, true_and, Subtype.exists, Finite.mem_toFinset] - exact ⟨a, ha, rfl⟩ - -lemma Inducing.alexandrovDiscrete {f : β → α} (h : Inducing f) : AlexandrovDiscrete β where - isOpen_sInter S hS := by - simp_rw [h.isOpen_iff] at hS ⊢ - choose U hU htU using hS - refine ⟨_, isOpen_iInter₂ hU, ?_⟩ - simp_rw [preimage_iInter, htU, sInter_eq_biInter] - lemma alexandrovDiscrete_coinduced {β : Type*} {f : α → β} : @AlexandrovDiscrete β (coinduced f ‹_›) := @AlexandrovDiscrete.mk β (coinduced f ‹_›) fun S hS ↦ by rw [isOpen_coinduced, preimage_sInter]; exact isOpen_iInter₂ hS -lemma AlexandrovDiscrete.sup {t₁ t₂ : TopologicalSpace α} (_ : @AlexandrovDiscrete α t₁) - (_ : @AlexandrovDiscrete α t₂) : - @AlexandrovDiscrete α (t₁ ⊔ t₂) := - @AlexandrovDiscrete.mk α (t₁ ⊔ t₂) fun _S hS ↦ - ⟨@isOpen_sInter _ t₁ _ _ fun _s hs ↦ (hS _ hs).1, isOpen_sInter fun _s hs ↦ (hS _ hs).2⟩ - -lemma alexandrovDiscrete_iSup {t : ι → TopologicalSpace α} (_ : ∀ i, @AlexandrovDiscrete α (t i)) : - @AlexandrovDiscrete α (⨆ i, t i) := - @AlexandrovDiscrete.mk α (⨆ i, t i) - fun _S hS ↦ isOpen_iSup_iff.2 - fun i ↦ @isOpen_sInter _ (t i) _ _ - fun _s hs ↦ isOpen_iSup_iff.1 (hS _ hs) _ instance AlexandrovDiscrete.toFirstCountable : FirstCountableTopology α where nhds_generated_countable a := ⟨{exterior {a}}, countable_singleton _, by simp⟩ @@ -267,3 +274,5 @@ instance Sum.instAlexandrovDiscrete : AlexandrovDiscrete (α ⊕ β) := instance Sigma.instAlexandrovDiscrete {ι : Type*} {π : ι → Type*} [∀ i, TopologicalSpace (π i)] [∀ i, AlexandrovDiscrete (π i)] : AlexandrovDiscrete (Σ i, π i) := alexandrovDiscrete_iSup fun _ ↦ alexandrovDiscrete_coinduced + +end diff --git a/Mathlib/Topology/Compactness/SigmaCompact.lean b/Mathlib/Topology/Compactness/SigmaCompact.lean index 226ef693c3f55..6b9d8a254f801 100644 --- a/Mathlib/Topology/Compactness/SigmaCompact.lean +++ b/Mathlib/Topology/Compactness/SigmaCompact.lean @@ -183,6 +183,7 @@ instance (priority := 100) sigmaCompactSpace_of_locally_compact_second_countable refine SigmaCompactSpace.of_countable _ (hsc.image K) (forall_mem_image.2 fun x _ => hKc x) ?_ rwa [sUnion_image] +section -- Porting note: doesn't work on the same line variable (X) variable [SigmaCompactSpace X] @@ -299,7 +300,7 @@ theorem countable_cover_nhds_of_sigma_compact {f : X → Set X} (hf : ∀ x, f x rcases countable_cover_nhdsWithin_of_sigma_compact isClosed_univ fun x _ => hf x with ⟨s, -, hsc, hsU⟩ exact ⟨s, hsc, univ_subset_iff.1 hsU⟩ - +end @@ -407,7 +408,7 @@ noncomputable def choice (X : Type*) [TopologicalSpace X] [WeaklyLocallyCompactS · refine univ_subset_iff.1 (iUnion_compactCovering X ▸ ?_) exact iUnion_mono' fun n => ⟨n + 1, subset_union_right⟩ -noncomputable instance [LocallyCompactSpace X] : +noncomputable instance [SigmaCompactSpace X] [LocallyCompactSpace X] : Inhabited (CompactExhaustion X) := ⟨CompactExhaustion.choice X⟩