-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain.py
108 lines (85 loc) · 4.83 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
import torch
import torch.optim as optim
from neuralprocess import NeuralProcess
import logging
from tqdm import tqdm
from params import get_params
from utils import set_seed
class Trainer(object):
def __init__(self, args):
super(Trainer, self).__init__()
self.args = args
# use cuda or not
self.use_cuda = args.gpu >= 0 and torch.cuda.is_available()
if self.use_cuda:
torch.cuda.set_device(args.gpu)
print('use cuda')
self.model = NeuralProcess(args, self.use_cuda)
if self.use_cuda:
self.model.cuda()
self.optimizer = optim.Adam(self.model.parameters(), lr = self.args.lr, weight_decay = self.args.weight_decay)
self.best_mrr = 0
def train(self):
self.args.grad_norm = 1.0
# early-stop strategy
import time
patient = 0
# checkpoint = torch.load('./Checkpoints/{}/6000_best_mrr_model.pth'.format(self.args.dataset+'_100_'+str(self.args.few)))
# self.model.load_state_dict(checkpoint['state_dict'])
for epoch in tqdm(range(self.args.n_epochs)):
self.model.train()
loss = self.model.forward(epoch)
self.optimizer.zero_grad()
loss.backward()
torch.nn.utils.clip_grad_norm_(self.model.parameters(), self.args.grad_norm)
self.optimizer.step()
if epoch % self.args.evaluate_every == 0:
print("-------------------------------------Valid---------------------------------------")
with torch.no_grad():
start = time.time()
self.model.eval()
results = self.model.eval_one_time(eval_type='valid')
end = time.time()
print(end-start)
mrr = results['total_mrr']
logging.info("Epoch: {} - Validation".format(epoch))
logging.info("Total MRR (filtered): {:.6f}".format(results['total_mrr']))
logging.info("Total Hits (filtered) @ {}: {:.6f}".format(1, results['total_hits@1']))
logging.info("Total Hits (filtered) @ {}: {:.6f}".format(3, results['total_hits@3']))
logging.info("Total Hits (filtered) @ {}: {:.6f}".format(10, results['total_hits@10']))
print("Total MRR (filtered): {:.6f}".format(results['total_mrr']))
print("Total Hits (filtered) @ {}: {:.6f}".format(1, results['total_hits@1']))
print("Total Hits (filtered) @ {}: {:.6f}".format(3, results['total_hits@3']))
print("Total Hits (filtered) @ {}: {:.6f}".format(10, results['total_hits@10']))
if mrr > self.best_mrr:
patient = 0
self.best_mrr = mrr
torch.save({'state_dict': self.model.state_dict(), 'epoch': epoch}, './Checkpoints/{}/best_mrr_model_{}.pth'.format(self.args.dataset, self.args.few))
else:
patient += 1
if patient >= 4:
break
# For test
# checkpoint = torch.load('./Checkpoints/{}/best_mrr_model_{}.pth'.format(self.args.dataset, self.args.few))
# self.model.load_state_dict(checkpoint['state_dict'])
with torch.no_grad():
self.model.eval()
results = self.model.eval_one_time(eval_type='test')
mrr = results['total_mrr']
logging.info("Total MRR (filtered): {:.6f}".format(results['total_mrr']))
logging.info("Total Hits (filtered) @ {}: {:.6f}".format(1, results['total_hits@1']))
logging.info("Total Hits (filtered) @ {}: {:.6f}".format(3, results['total_hits@3']))
logging.info("Total Hits (filtered) @ {}: {:.6f}".format(10, results['total_hits@10']))
print("Total MRR (filtered): {:.6f}".format(results['total_mrr']))
print("Total Hits (filtered) @ {}: {:.6f}".format(1, results['total_hits@1']))
print("Total Hits (filtered) @ {}: {:.6f}".format(3, results['total_hits@3']))
print("Total Hits (filtered) @ {}: {:.6f}".format(10, results['total_hits@10']))
if __name__ == '__main__':
args = get_params()
filename = './log/' + args.dataset + '_' + args.score_function + '_np_t'+ str(args.num_train_entity) + '_few' + str(args.few) + '.log'
logging.basicConfig(level=logging.INFO, filename=filename, filemode='a', format='%(asctime)s - %(levelname)s: %(message)s')
logging.info(args)
print(args)
set_seed(args.seed)
trainer = Trainer(args)
trainer.train()