-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmodels.py
283 lines (214 loc) · 10.3 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
from collections import OrderedDict
from torch_geometric.nn import RGCNConv
from torch_geometric.nn.inits import uniform
from torch_geometric.nn.conv import MessagePassing
class EntityEmbedding(nn.Module):
def __init__(self, entity_embedding_dim, relation_embedding_dim, num_entities, num_relations, args, entity_embedding, relation_embedding):
super(EntityEmbedding, self).__init__()
self.args = args
self.entity_embedding_dim = entity_embedding_dim
self.relation_embedding_dim = relation_embedding_dim
self.num_entities = num_entities
self.num_relations = num_relations
self.entity_embedding = nn.Embedding(self.num_entities, self.entity_embedding_dim)
self.relation_embedding = nn.Parameter(torch.Tensor(self.num_relations, self.relation_embedding_dim))
nn.init.xavier_uniform_(self.relation_embedding, gain=nn.init.calculate_gain('relu'))
if self.args.pre_train:
self.entity_embedding.weight.data.copy_(entity_embedding.clone().detach())
self.relation_embedding.data.copy_(relation_embedding.clone().detach())
if not self.args.fine_tune:
self.entity_embedding.weight.requires_grad = False
self.relation_embedding.requires_grad = False
# self.relu = nn.ReLU()
self.dropout = nn.Dropout(args.dropout)
self.gnn = GENConv(self.entity_embedding_dim + self.relation_embedding_dim, self.entity_embedding_dim, self.num_relations * 2, num_bases = self.args.bases, root_weight = False, bias = False)
self.score_function = self.args.score_function
def forward(self, unseen_entity, triplets, use_cuda, total_unseen_entity_embedding = None):
# Pre-process
src, rel, dst = triplets.transpose()
uniq_v, edges = np.unique((src, dst), return_inverse=True)
src, dst = np.reshape(edges, (2, -1)) # indices to reconstruct the original array from unique values.
unseen_index = np.where(uniq_v == unseen_entity)[0][0]
rel_index = np.concatenate((rel, rel))
src, dst = np.concatenate((src, dst)), np.concatenate((dst, src))
rel = np.concatenate((rel, rel + self.num_relations))
# Torch
# node_id for all entities
node_id = torch.LongTensor(uniq_v)
edge_index = torch.stack((
torch.LongTensor(src),
torch.LongTensor(dst)
))
edge_type = torch.LongTensor(rel)
if use_cuda:
node_id = node_id.cuda()
edge_index = edge_index.cuda()
edge_type = edge_type.cuda()
# entity embeddings and relation embeddings
x = self.entity_embedding(node_id)
rel_emb = self.relation_embedding[rel_index]
embeddings = self.gnn(x, edge_index, edge_type, rel_emb, edge_norm = None)
unseen_entity_embedding = embeddings[unseen_index]
# unseen_entity_embedding = self.dropout(self.relu(unseen_entity_embedding))
unseen_entity_embedding = self.dropout(unseen_entity_embedding)
return unseen_entity_embedding
class MuSigmaEncoder(nn.Module):
"""
Maps a representation r to mu and sigma which will define the normal
distribution from which we sample the latent variable z.
Parameters
----------
r_dim : int
Dimension of output representation r.
z_dim : int
Dimension of latent variable z.
"""
def __init__(self, r_dim, z_dim):
super(MuSigmaEncoder, self).__init__()
self.r_dim = r_dim
self.z_dim = z_dim
self.r_to_hidden = nn.Linear(r_dim, r_dim)
self.hidden_to_mu = nn.Linear(r_dim, z_dim)
self.hidden_to_sigma = nn.Linear(r_dim, z_dim)
# def aggregate(self, r):
# return torch.mean(r, dim=0)
def forward(self, r):
"""
r : torch.Tensor
Shape (batch_size, few, r_dim)
"""
# r = self.aggregate(r)
hidden = torch.relu(self.r_to_hidden(r))
mu = self.hidden_to_mu(hidden)
# Define sigma following convention in "Empirical Evaluation of Neural
# Process Objectives" and "Attentive Neural Processes"
sigma = 0.1 + 0.9 * torch.sigmoid(self.hidden_to_sigma(hidden))
return torch.distributions.Normal(mu, sigma)
class LatentEncoder(nn.Module):
def __init__(self, embed_size=100, num_hidden1=500, num_hidden2=200, r_dim=100, dropout_p=0.5, rw=20):
super(LatentEncoder, self).__init__()
self.embed_size = embed_size
self.rel_fc1 = nn.Sequential(OrderedDict([
('fc', nn.Linear(3 * embed_size + 1 + rw, num_hidden1)),
# ('bn', nn.BatchNorm1d(few)),
('relu', nn.LeakyReLU()),
('drop', nn.Dropout(p=dropout_p)),
]))
self.rel_fc2 = nn.Sequential(OrderedDict([
('fc', nn.Linear(num_hidden1, num_hidden2)),
# ('bn', nn.BatchNorm1d(few)),
('relu', nn.LeakyReLU()),
('drop', nn.Dropout(p=dropout_p)),
]))
self.rel_fc3 = nn.Sequential(OrderedDict([
('fc', nn.Linear(num_hidden2, r_dim)),
# ('bn', nn.BatchNorm1d(few)),
]))
nn.init.xavier_normal_(self.rel_fc1.fc.weight)
nn.init.xavier_normal_(self.rel_fc2.fc.weight)
nn.init.xavier_normal_(self.rel_fc3.fc.weight)
def forward(self, x):
x = self.rel_fc1(x)
x = self.rel_fc2(x)
x = self.rel_fc3(x)
return x # (B, few, r_dim)
class GENConv(MessagePassing):
r"""The relational graph convolutional operator from the `"Modeling
Relational Data with Graph Convolutional Networks"
<https://arxiv.org/abs/1703.06103>`_ paper
.. math::
\mathbf{x}^{\prime}_i = \mathbf{\Theta}_{\textrm{root}} \cdot
\mathbf{x}_i + \sum_{r \in \mathcal{R}} \sum_{j \in \mathcal{N}_r(i)}
\frac{1}{|\mathcal{N}_r(i)|} \mathbf{\Theta}_r \cdot \mathbf{x}_j,
where :math:`\mathcal{R}` denotes the set of relations, *i.e.* edge types.
Edge type needs to be a one-dimensional :obj:`torch.long` tensor which
stores a relation identifier
:math:`\in \{ 0, \ldots, |\mathcal{R}| - 1\}` for each edge.
Args:
in_channels (int): Size of each input sample.
out_channels (int): Size of each output sample.
num_relations (int): Number of relations.
num_bases (int): Number of bases used for basis-decomposition.
root_weight (bool, optional): If set to :obj:`False`, the layer will
not add transformed root node features to the output.
(default: :obj:`True`)
bias (bool, optional): If set to :obj:`False`, the layer will not learn
an additive bias. (default: :obj:`True`)
**kwargs (optional): Additional arguments of
:class:`torch_geometric.nn.conv.MessagePassing`.
"""
def __init__(self, in_channels, out_channels, num_relations, num_bases,
root_weight=True, bias=True, **kwargs):
super(GENConv, self).__init__(aggr='mean', **kwargs)
self.in_channels = in_channels
self.out_channels = out_channels
self.num_relations = num_relations
self.num_bases = num_bases
self.basis = nn.Parameter(torch.Tensor(num_bases, in_channels, out_channels))
self.att = nn.Parameter(torch.Tensor(num_relations, num_bases))
if root_weight:
self.root = nn.Parameter(torch.Tensor(int(in_channels / 2), out_channels))
else:
self.register_parameter('root', None)
if bias:
self.bias = nn.Parameter(torch.Tensor(out_channels))
else:
self.register_parameter('bias', None)
self.reset_parameters()
def reset_parameters(self):
size = self.num_bases * self.in_channels
uniform(size, self.basis)
uniform(size, self.att)
uniform(size, self.root)
uniform(size, self.bias)
def forward(self, x, edge_index, edge_type, rel_emb, edge_norm=None, size=None):
""""""
self.rel_emb = rel_emb
return self.propagate(edge_index, size=size, x=x, edge_type=edge_type,
edge_norm=edge_norm)
def message(self, x_j, edge_index_j, edge_index_i, edge_type, edge_norm):
# Concat node and relation embedding
x_j = torch.cat((
x_j,
self.rel_emb
), dim = 1)
w = torch.matmul(self.att, self.basis.view(self.num_bases, -1))
# If no node features are given, we implement a simple embedding
# loopkup based on the target node index and its edge type.
if x_j is None:
w = w.view(-1, self.out_channels)
index = edge_type * self.in_channels + edge_index_j
out = torch.index_select(w, 0, index)
else:
w = w.view(self.num_relations, self.in_channels, self.out_channels)
w = torch.index_select(w, 0, edge_type)
out = torch.bmm(x_j.unsqueeze(1), w).squeeze(-2)
return out if edge_norm is None else out * edge_norm.view(-1, 1)
def update(self, aggr_out, x):
if self.root is not None:
if x is None:
out = aggr_out + self.root
else:
out = aggr_out + torch.matmul(x, self.root)
if self.bias is not None:
out = out + self.bias
if (self.root is None) and (self.bias is None):
return aggr_out
return out
def __repr__(self):
return '{}({}, {}, num_relations={})'.format(
self.__class__.__name__, self.in_channels, self.out_channels,
self.num_relations)
class Decoder(nn.Module):
def __init__(self, args, embed_dim):
super(Decoder, self).__init__()
self.args = args
self.enc_z = nn.Linear(embed_dim, embed_dim)
self.enc_rw = nn.Linear(100, embed_dim)
def forward(self, embed, z, rw):
embed = embed + self.enc_z(z)
return embed + self.enc_rw(rw)