-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathseq2seq.py
148 lines (116 loc) · 5.13 KB
/
seq2seq.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
import pandas as pd
import numpy as np
import random
from datasets import Dataset, load_metric
import transformers
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, Seq2SeqTrainer, Seq2SeqTrainingArguments, DataCollatorForSeq2Seq
from datasets import load_dataset, Dataset
import pandas as pd
import evaluate
import torch
import nltk
from transformers import Seq2SeqTrainer, Seq2SeqTrainingArguments, AutoTokenizer, AutoModelForSeq2SeqLM
import nltk
import argparse
import numpy as np
# Initialize argparse
parser = argparse.ArgumentParser(description='Configure training parameters.')
# Add arguments for training configuration
parser.add_argument('--batch_size', type=int, default=64, help='Batch size for training')
parser.add_argument('--num_train_epochs', type=int, default=30, help='Number of epochs for training')
parser.add_argument('--learning_rate', type=float, default=2e-5, help='Learning rate for the optimizer')
parser.add_argument('--model_checkpoint', type=str, default="VietAI/vit5-large", help='Model checkpoint to use')
# Parse arguments
args = parser.parse_args()
# Assign variables from args
batch_size = args.batch_size
num_train_epochs = args.num_train_epochs
learning_rate = args.learning_rate
model_checkpoint = args.model_checkpoint
# Now you can use these variables in your training setup
print(f"Training setup:")
print(f"Batch size: {batch_size}")
print(f"Number of training epochs: {num_train_epochs}")
print(f"Learning rate: {learning_rate}")
print(f"Model checkpoint: {model_checkpoint}")
id2label = {'0': "negative", '1': "neutral", '2': "positive"}
label2id = {"negative": '0', "neutral": '1', 'positive': '2'}
train_df = pd.read_excel('train.xlsx')#pd.concat([df, df_dev]).reset_index(drop=True)
train_df['label'] = train_df['label'].astype(str)
train_dataset = Dataset.from_pandas(train_df)
testset = pd.read_excel('test.xlsx')
# Then convert the modified DataFrame to a Hugging Face dataset
testset['label'] = testset['label'].astype(str)
print(train_df['label'].unique())
print(testset['label'].unique())
test_dataset = Dataset.from_pandas(testset[['text', 'label']])
# Output unique values to verify
tokenizer = AutoTokenizer.from_pretrained(model_checkpoint)
id2label = {'0': "Negative", '1': "Neutral", '2': "Positive"}
label2id = {"Negative": '0', "Neutral": '1', 'Positive': '2'}
model = AutoModelForSeq2SeqLM.from_pretrained(model_checkpoint)
def preprocess_function(examples):
inputs = [doc for doc in examples["text"]]
model_inputs = tokenizer(inputs, max_length=128, truncation=True)
labels = tokenizer(text_target=examples["label"], max_length=8, truncation=True)
model_inputs["labels"] = labels["input_ids"]
return model_inputs
tokenized_train_dataset = train_dataset.map(preprocess_function, batched=True)
tokenized_test_dataset = test_dataset.map(preprocess_function, batched=True)
print('tokenized_train_dataset', tokenized_train_dataset)
print('tokenized_test_dataset', tokenized_test_dataset)
# Load the individual metrics
accuracy = evaluate.load("accuracy")
f1 = evaluate.load("f1")
precision = evaluate.load("precision")
recall = evaluate.load("recall")
def compute_metrics(eval_pred):
logits, labels = eval_pred
labels = np.where(labels != -100, labels, tokenizer.pad_token_id)
decoded_preds = tokenizer.batch_decode(logits, skip_special_tokens=True)
decoded_labels = tokenizer.batch_decode(labels, skip_special_tokens=True)
decoded_preds = [pred if pred.isdigit() else -1 for pred in decoded_preds] # Replace non-digit predictions with '-1'
decoded_labels = [label if label.isdigit() else -1 for label in decoded_labels] # Replace non-digit labels with '-1'
predictions = decoded_preds
labels = decoded_labels
metrics_result = {
"accuracy": accuracy.compute(predictions=predictions, references=labels)['accuracy'],
}
return metrics_result
# This modified function should now work without the TypeError
data_collator = DataCollatorForSeq2Seq(tokenizer=tokenizer, model=model)
tokenized_train_dataset=tokenized_train_dataset.remove_columns(['text', 'label'])
tokenized_test_dataset=tokenized_test_dataset.remove_columns(['text', 'label'])
model_name = model_checkpoint.split("/")[-1]
transformers.logging.set_verbosity_info()
training_args = Seq2SeqTrainingArguments(
output_dir=f"results/{model_name}",
eval_strategy="epoch",
save_strategy="epoch",
logging_strategy='epoch',
learning_rate=learning_rate,
per_device_train_batch_size=batch_size,
per_device_eval_batch_size=batch_size,
weight_decay=0.01,
save_total_limit=2,
num_train_epochs=num_train_epochs,
predict_with_generate=True,
load_best_model_at_end=True,
metric_for_best_model='eval_accuracy',
bf16=True,
lr_scheduler_type='cosine',
warmup_ratio=0.05,
)
# Setting up the trainer
trainer = Seq2SeqTrainer(
model=model,
args=training_args,
train_dataset=tokenized_train_dataset,
eval_dataset=tokenized_test_dataset,
tokenizer=tokenizer,
data_collator=data_collator,
compute_metrics=compute_metrics,
callbacks = [transformers.EarlyStoppingCallback(early_stopping_patience=3)]
)
trainer.train()
trainer.save_model()