-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathuci_034_diabetes_130_us_hospitals.py
82 lines (68 loc) · 3.31 KB
/
uci_034_diabetes_130_us_hospitals.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
import urllib.request
import io
import zipfile
import numpy
import pandas # install pandas by "pip install pandas", or install Anaconda distribution (https://www.anaconda.com/)
# Warning: the data processing techniques shown below are just for concept explanation, which are not best-proctices
# data set repository
# https://archive.ics.uci.edu/ml/datasets/Diabetes+130-US+hospitals+for+years+1999-2008
# if the file is on your local device, change url_data_train into local file path, e.g., 'D:\local_file.data'
url_data_train = 'https://archive.ics.uci.edu/ml/machine-learning-databases/00296/dataset_diabetes.zip'
def download_file(url):
resp = urllib.request.urlopen(url)
if resp.status != 200:
resp.close()
raise ValueError('Error: {0}'.format(resp.reason))
print('\rStarted', end = '\r')
content_length = resp.getheader('Content-Length')
if content_length is None:
content_length = '(total: unknown)'
else:
content_length = int(content_length)
if content_length < 1024:
content_length_str = '(total %.0f Bytes)' % content_length
elif content_length < 1024 * 1024:
content_length_str = '(total %.0f KB)' % (content_length / 1024)
else:
content_length_str = '(total %.1f MB)' % (content_length / 1024 / 1024)
total = bytes()
while not resp.isclosed():
total += resp.read(10 * 1024)
if len(total) < 1024:
print(('\rDownloaded: %.0f Bytes ' % len(total)) + content_length_str + ' ', end = '\r')
if len(total) < 1024 * 1024:
print(('\rDownloaded: %.0f KB ' % (len(total) / 1024)) + content_length_str + ' ', end = '\r')
else:
print(('\rDownloaded: %.1f MB ' % (len(total) / 1024 / 1024)) + content_length_str + ' ', end = '\r')
print()
return io.BytesIO(total)
# download data from UCI Machine Learning Repository
data_train = download_file(url_data_train) if url_data_train.startswith('http') else url_data_train
# unzip the downloaded file, and get data files
with zipfile.ZipFile(data_train) as myzip:
with myzip.open('dataset_diabetes/diabetic_data.csv') as myfile:
df_training = pandas.read_csv(myfile, header = 0, index_col = False)
# drop variables which are inappropriate for modeling
df_training = df_training.drop(['encounter_id', 'patient_nbr', 'admission_type_id', 'discharge_disposition_id',
'admission_source_id', 'diag_1', 'diag_2', 'diag_3'], axis = 1)
# convert age into numeric values because it could be binned when modeling
age_dict = {
'[0-10)' : 1,
'[10-20)' : 2,
'[20-30)' : 3,
'[30-40)' : 4,
'[40-50)' : 5,
'[50-60)' : 6,
'[60-70)' : 7,
'[70-80)' : 8,
'[80-90)' : 9,
'[90-100)': 10
}
df_training['age'] = df_training['age'].apply(lambda x: age_dict[x]).astype(numpy.int64)
# the target variable, inserted into the dataframe as the first column, and drop the original readmitted variable
df_training.insert(0, 'target_readmitted', df_training['readmitted'].apply(lambda x: 0 if x == 'NO' else 1))
df_training = df_training.drop('readmitted', axis = 1)
# save the dataframe as CSV file, you can zip it, upload it to t1modeler.com, and build a model
df_training.to_csv('uci_034_diabetes_130_us_hospitals.csv', index = False)