-
Notifications
You must be signed in to change notification settings - Fork 3
/
dataDrivenEst.html
563 lines (465 loc) · 89.5 KB
/
dataDrivenEst.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
<!DOCTYPE html>
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8"/>
<title>for reproducibility</title>
<script type="text/javascript">
window.onload = function() {
var imgs = document.getElementsByTagName('img'), i, img;
for (i = 0; i < imgs.length; i++) {
img = imgs[i];
// center an image if it is the only element of its parent
if (img.parentElement.childElementCount === 1)
img.parentElement.style.textAlign = 'center';
}
};
</script>
<!-- Styles for R syntax highlighter -->
<style type="text/css">
pre .operator,
pre .paren {
color: rgb(104, 118, 135)
}
pre .literal {
color: #990073
}
pre .number {
color: #099;
}
pre .comment {
color: #998;
font-style: italic
}
pre .keyword {
color: #900;
font-weight: bold
}
pre .identifier {
color: rgb(0, 0, 0);
}
pre .string {
color: #d14;
}
</style>
<!-- R syntax highlighter -->
<script type="text/javascript">
var hljs=new function(){function m(p){return p.replace(/&/gm,"&").replace(/</gm,"<")}function f(r,q,p){return RegExp(q,"m"+(r.cI?"i":"")+(p?"g":""))}function b(r){for(var p=0;p<r.childNodes.length;p++){var q=r.childNodes[p];if(q.nodeName=="CODE"){return q}if(!(q.nodeType==3&&q.nodeValue.match(/\s+/))){break}}}function h(t,s){var p="";for(var r=0;r<t.childNodes.length;r++){if(t.childNodes[r].nodeType==3){var q=t.childNodes[r].nodeValue;if(s){q=q.replace(/\n/g,"")}p+=q}else{if(t.childNodes[r].nodeName=="BR"){p+="\n"}else{p+=h(t.childNodes[r])}}}if(/MSIE [678]/.test(navigator.userAgent)){p=p.replace(/\r/g,"\n")}return p}function a(s){var r=s.className.split(/\s+/);r=r.concat(s.parentNode.className.split(/\s+/));for(var q=0;q<r.length;q++){var p=r[q].replace(/^language-/,"");if(e[p]){return p}}}function c(q){var p=[];(function(s,t){for(var r=0;r<s.childNodes.length;r++){if(s.childNodes[r].nodeType==3){t+=s.childNodes[r].nodeValue.length}else{if(s.childNodes[r].nodeName=="BR"){t+=1}else{if(s.childNodes[r].nodeType==1){p.push({event:"start",offset:t,node:s.childNodes[r]});t=arguments.callee(s.childNodes[r],t);p.push({event:"stop",offset:t,node:s.childNodes[r]})}}}}return t})(q,0);return p}function k(y,w,x){var q=0;var z="";var s=[];function u(){if(y.length&&w.length){if(y[0].offset!=w[0].offset){return(y[0].offset<w[0].offset)?y:w}else{return w[0].event=="start"?y:w}}else{return y.length?y:w}}function t(D){var A="<"+D.nodeName.toLowerCase();for(var B=0;B<D.attributes.length;B++){var C=D.attributes[B];A+=" "+C.nodeName.toLowerCase();if(C.value!==undefined&&C.value!==false&&C.value!==null){A+='="'+m(C.value)+'"'}}return A+">"}while(y.length||w.length){var v=u().splice(0,1)[0];z+=m(x.substr(q,v.offset-q));q=v.offset;if(v.event=="start"){z+=t(v.node);s.push(v.node)}else{if(v.event=="stop"){var p,r=s.length;do{r--;p=s[r];z+=("</"+p.nodeName.toLowerCase()+">")}while(p!=v.node);s.splice(r,1);while(r<s.length){z+=t(s[r]);r++}}}}return z+m(x.substr(q))}function j(){function q(x,y,v){if(x.compiled){return}var u;var s=[];if(x.k){x.lR=f(y,x.l||hljs.IR,true);for(var w in x.k){if(!x.k.hasOwnProperty(w)){continue}if(x.k[w] instanceof Object){u=x.k[w]}else{u=x.k;w="keyword"}for(var r in u){if(!u.hasOwnProperty(r)){continue}x.k[r]=[w,u[r]];s.push(r)}}}if(!v){if(x.bWK){x.b="\\b("+s.join("|")+")\\s"}x.bR=f(y,x.b?x.b:"\\B|\\b");if(!x.e&&!x.eW){x.e="\\B|\\b"}if(x.e){x.eR=f(y,x.e)}}if(x.i){x.iR=f(y,x.i)}if(x.r===undefined){x.r=1}if(!x.c){x.c=[]}x.compiled=true;for(var t=0;t<x.c.length;t++){if(x.c[t]=="self"){x.c[t]=x}q(x.c[t],y,false)}if(x.starts){q(x.starts,y,false)}}for(var p in e){if(!e.hasOwnProperty(p)){continue}q(e[p].dM,e[p],true)}}function d(B,C){if(!j.called){j();j.called=true}function q(r,M){for(var L=0;L<M.c.length;L++){if((M.c[L].bR.exec(r)||[null])[0]==r){return M.c[L]}}}function v(L,r){if(D[L].e&&D[L].eR.test(r)){return 1}if(D[L].eW){var M=v(L-1,r);return M?M+1:0}return 0}function w(r,L){return L.i&&L.iR.test(r)}function K(N,O){var M=[];for(var L=0;L<N.c.length;L++){M.push(N.c[L].b)}var r=D.length-1;do{if(D[r].e){M.push(D[r].e)}r--}while(D[r+1].eW);if(N.i){M.push(N.i)}return f(O,M.join("|"),true)}function p(M,L){var N=D[D.length-1];if(!N.t){N.t=K(N,E)}N.t.lastIndex=L;var r=N.t.exec(M);return r?[M.substr(L,r.index-L),r[0],false]:[M.substr(L),"",true]}function z(N,r){var L=E.cI?r[0].toLowerCase():r[0];var M=N.k[L];if(M&&M instanceof Array){return M}return false}function F(L,P){L=m(L);if(!P.k){return L}var r="";var O=0;P.lR.lastIndex=0;var M=P.lR.exec(L);while(M){r+=L.substr(O,M.index-O);var N=z(P,M);if(N){x+=N[1];r+='<span class="'+N[0]+'">'+M[0]+"</span>"}else{r+=M[0]}O=P.lR.lastIndex;M=P.lR.exec(L)}return r+L.substr(O,L.length-O)}function J(L,M){if(M.sL&&e[M.sL]){var r=d(M.sL,L);x+=r.keyword_count;return r.value}else{return F(L,M)}}function I(M,r){var L=M.cN?'<span class="'+M.cN+'">':"";if(M.rB){y+=L;M.buffer=""}else{if(M.eB){y+=m(r)+L;M.buffer=""}else{y+=L;M.buffer=r}}D.push(M);A+=M.r}function G(N,M,Q){var R=D[D.length-1];if(Q){y+=J(R.buffer+N,R);return false}var P=q(M,R);if(P){y+=J(R.buffer+N,R);I(P,M);return P.rB}var L=v(D.length-1,M);if(L){var O=R.cN?"</span>":"";if(R.rE){y+=J(R.buffer+N,R)+O}else{if(R.eE){y+=J(R.buffer+N,R)+O+m(M)}else{y+=J(R.buffer+N+M,R)+O}}while(L>1){O=D[D.length-2].cN?"</span>":"";y+=O;L--;D.length--}var r=D[D.length-1];D.length--;D[D.length-1].buffer="";if(r.starts){I(r.starts,"")}return R.rE}if(w(M,R)){throw"Illegal"}}var E=e[B];var D=[E.dM];var A=0;var x=0;var y="";try{var s,u=0;E.dM.buffer="";do{s=p(C,u);var t=G(s[0],s[1],s[2]);u+=s[0].length;if(!t){u+=s[1].length}}while(!s[2]);if(D.length>1){throw"Illegal"}return{r:A,keyword_count:x,value:y}}catch(H){if(H=="Illegal"){return{r:0,keyword_count:0,value:m(C)}}else{throw H}}}function g(t){var p={keyword_count:0,r:0,value:m(t)};var r=p;for(var q in e){if(!e.hasOwnProperty(q)){continue}var s=d(q,t);s.language=q;if(s.keyword_count+s.r>r.keyword_count+r.r){r=s}if(s.keyword_count+s.r>p.keyword_count+p.r){r=p;p=s}}if(r.language){p.second_best=r}return p}function i(r,q,p){if(q){r=r.replace(/^((<[^>]+>|\t)+)/gm,function(t,w,v,u){return w.replace(/\t/g,q)})}if(p){r=r.replace(/\n/g,"<br>")}return r}function n(t,w,r){var x=h(t,r);var v=a(t);var y,s;if(v){y=d(v,x)}else{return}var q=c(t);if(q.length){s=document.createElement("pre");s.innerHTML=y.value;y.value=k(q,c(s),x)}y.value=i(y.value,w,r);var u=t.className;if(!u.match("(\\s|^)(language-)?"+v+"(\\s|$)")){u=u?(u+" "+v):v}if(/MSIE [678]/.test(navigator.userAgent)&&t.tagName=="CODE"&&t.parentNode.tagName=="PRE"){s=t.parentNode;var p=document.createElement("div");p.innerHTML="<pre><code>"+y.value+"</code></pre>";t=p.firstChild.firstChild;p.firstChild.cN=s.cN;s.parentNode.replaceChild(p.firstChild,s)}else{t.innerHTML=y.value}t.className=u;t.result={language:v,kw:y.keyword_count,re:y.r};if(y.second_best){t.second_best={language:y.second_best.language,kw:y.second_best.keyword_count,re:y.second_best.r}}}function o(){if(o.called){return}o.called=true;var r=document.getElementsByTagName("pre");for(var p=0;p<r.length;p++){var q=b(r[p]);if(q){n(q,hljs.tabReplace)}}}function l(){if(window.addEventListener){window.addEventListener("DOMContentLoaded",o,false);window.addEventListener("load",o,false)}else{if(window.attachEvent){window.attachEvent("onload",o)}else{window.onload=o}}}var e={};this.LANGUAGES=e;this.highlight=d;this.highlightAuto=g;this.fixMarkup=i;this.highlightBlock=n;this.initHighlighting=o;this.initHighlightingOnLoad=l;this.IR="[a-zA-Z][a-zA-Z0-9_]*";this.UIR="[a-zA-Z_][a-zA-Z0-9_]*";this.NR="\\b\\d+(\\.\\d+)?";this.CNR="\\b(0[xX][a-fA-F0-9]+|(\\d+(\\.\\d*)?|\\.\\d+)([eE][-+]?\\d+)?)";this.BNR="\\b(0b[01]+)";this.RSR="!|!=|!==|%|%=|&|&&|&=|\\*|\\*=|\\+|\\+=|,|\\.|-|-=|/|/=|:|;|<|<<|<<=|<=|=|==|===|>|>=|>>|>>=|>>>|>>>=|\\?|\\[|\\{|\\(|\\^|\\^=|\\||\\|=|\\|\\||~";this.ER="(?![\\s\\S])";this.BE={b:"\\\\.",r:0};this.ASM={cN:"string",b:"'",e:"'",i:"\\n",c:[this.BE],r:0};this.QSM={cN:"string",b:'"',e:'"',i:"\\n",c:[this.BE],r:0};this.CLCM={cN:"comment",b:"//",e:"$"};this.CBLCLM={cN:"comment",b:"/\\*",e:"\\*/"};this.HCM={cN:"comment",b:"#",e:"$"};this.NM={cN:"number",b:this.NR,r:0};this.CNM={cN:"number",b:this.CNR,r:0};this.BNM={cN:"number",b:this.BNR,r:0};this.inherit=function(r,s){var p={};for(var q in r){p[q]=r[q]}if(s){for(var q in s){p[q]=s[q]}}return p}}();hljs.LANGUAGES.cpp=function(){var a={keyword:{"false":1,"int":1,"float":1,"while":1,"private":1,"char":1,"catch":1,"export":1,virtual:1,operator:2,sizeof:2,dynamic_cast:2,typedef:2,const_cast:2,"const":1,struct:1,"for":1,static_cast:2,union:1,namespace:1,unsigned:1,"long":1,"throw":1,"volatile":2,"static":1,"protected":1,bool:1,template:1,mutable:1,"if":1,"public":1,friend:2,"do":1,"return":1,"goto":1,auto:1,"void":2,"enum":1,"else":1,"break":1,"new":1,extern:1,using:1,"true":1,"class":1,asm:1,"case":1,typeid:1,"short":1,reinterpret_cast:2,"default":1,"double":1,register:1,explicit:1,signed:1,typename:1,"try":1,"this":1,"switch":1,"continue":1,wchar_t:1,inline:1,"delete":1,alignof:1,char16_t:1,char32_t:1,constexpr:1,decltype:1,noexcept:1,nullptr:1,static_assert:1,thread_local:1,restrict:1,_Bool:1,complex:1},built_in:{std:1,string:1,cin:1,cout:1,cerr:1,clog:1,stringstream:1,istringstream:1,ostringstream:1,auto_ptr:1,deque:1,list:1,queue:1,stack:1,vector:1,map:1,set:1,bitset:1,multiset:1,multimap:1,unordered_set:1,unordered_map:1,unordered_multiset:1,unordered_multimap:1,array:1,shared_ptr:1}};return{dM:{k:a,i:"</",c:[hljs.CLCM,hljs.CBLCLM,hljs.QSM,{cN:"string",b:"'\\\\?.",e:"'",i:"."},{cN:"number",b:"\\b(\\d+(\\.\\d*)?|\\.\\d+)(u|U|l|L|ul|UL|f|F)"},hljs.CNM,{cN:"preprocessor",b:"#",e:"$"},{cN:"stl_container",b:"\\b(deque|list|queue|stack|vector|map|set|bitset|multiset|multimap|unordered_map|unordered_set|unordered_multiset|unordered_multimap|array)\\s*<",e:">",k:a,r:10,c:["self"]}]}}}();hljs.LANGUAGES.r={dM:{c:[hljs.HCM,{cN:"number",b:"\\b0[xX][0-9a-fA-F]+[Li]?\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"number",b:"\\b\\d+(?:[eE][+\\-]?\\d*)?L\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"number",b:"\\b\\d+\\.(?!\\d)(?:i\\b)?",e:hljs.IMMEDIATE_RE,r:1},{cN:"number",b:"\\b\\d+(?:\\.\\d*)?(?:[eE][+\\-]?\\d*)?i?\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"number",b:"\\.\\d+(?:[eE][+\\-]?\\d*)?i?\\b",e:hljs.IMMEDIATE_RE,r:1},{cN:"keyword",b:"(?:tryCatch|library|setGeneric|setGroupGeneric)\\b",e:hljs.IMMEDIATE_RE,r:10},{cN:"keyword",b:"\\.\\.\\.",e:hljs.IMMEDIATE_RE,r:10},{cN:"keyword",b:"\\.\\.\\d+(?![\\w.])",e:hljs.IMMEDIATE_RE,r:10},{cN:"keyword",b:"\\b(?:function)",e:hljs.IMMEDIATE_RE,r:2},{cN:"keyword",b:"(?:if|in|break|next|repeat|else|for|return|switch|while|try|stop|warning|require|attach|detach|source|setMethod|setClass)\\b",e:hljs.IMMEDIATE_RE,r:1},{cN:"literal",b:"(?:NA|NA_integer_|NA_real_|NA_character_|NA_complex_)\\b",e:hljs.IMMEDIATE_RE,r:10},{cN:"literal",b:"(?:NULL|TRUE|FALSE|T|F|Inf|NaN)\\b",e:hljs.IMMEDIATE_RE,r:1},{cN:"identifier",b:"[a-zA-Z.][a-zA-Z0-9._]*\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"operator",b:"<\\-(?!\\s*\\d)",e:hljs.IMMEDIATE_RE,r:2},{cN:"operator",b:"\\->|<\\-",e:hljs.IMMEDIATE_RE,r:1},{cN:"operator",b:"%%|~",e:hljs.IMMEDIATE_RE},{cN:"operator",b:">=|<=|==|!=|\\|\\||&&|=|\\+|\\-|\\*|/|\\^|>|<|!|&|\\||\\$|:",e:hljs.IMMEDIATE_RE,r:0},{cN:"operator",b:"%",e:"%",i:"\\n",r:1},{cN:"identifier",b:"`",e:"`",r:0},{cN:"string",b:'"',e:'"',c:[hljs.BE],r:0},{cN:"string",b:"'",e:"'",c:[hljs.BE],r:0},{cN:"paren",b:"[[({\\])}]",e:hljs.IMMEDIATE_RE,r:0}]}};
hljs.initHighlightingOnLoad();
</script>
<style type="text/css">
body, td {
font-family: sans-serif;
background-color: white;
font-size: 13px;
}
body {
max-width: 800px;
margin: auto;
padding: 1em;
line-height: 20px;
}
tt, code, pre {
font-family: 'DejaVu Sans Mono', 'Droid Sans Mono', 'Lucida Console', Consolas, Monaco, monospace;
}
h1 {
font-size:2.2em;
}
h2 {
font-size:1.8em;
}
h3 {
font-size:1.4em;
}
h4 {
font-size:1.0em;
}
h5 {
font-size:0.9em;
}
h6 {
font-size:0.8em;
}
a:visited {
color: rgb(50%, 0%, 50%);
}
pre, img {
max-width: 100%;
}
pre {
overflow-x: auto;
}
pre code {
display: block; padding: 0.5em;
}
code {
font-size: 92%;
border: 1px solid #ccc;
}
code[class] {
background-color: #F8F8F8;
}
table, td, th {
border: none;
}
blockquote {
color:#666666;
margin:0;
padding-left: 1em;
border-left: 0.5em #EEE solid;
}
hr {
height: 0px;
border-bottom: none;
border-top-width: thin;
border-top-style: dotted;
border-top-color: #999999;
}
@media print {
* {
background: transparent !important;
color: black !important;
filter:none !important;
-ms-filter: none !important;
}
body {
font-size:12pt;
max-width:100%;
}
a, a:visited {
text-decoration: underline;
}
hr {
visibility: hidden;
page-break-before: always;
}
pre, blockquote {
padding-right: 1em;
page-break-inside: avoid;
}
tr, img {
page-break-inside: avoid;
}
img {
max-width: 100% !important;
}
@page :left {
margin: 15mm 20mm 15mm 10mm;
}
@page :right {
margin: 15mm 10mm 15mm 20mm;
}
p, h2, h3 {
orphans: 3; widows: 3;
}
h2, h3 {
page-break-after: avoid;
}
}
</style>
</head>
<body>
<p>Here we demonstrate a use case for Polyester where the means, variances, and fold changes of the transcripts in the experiment are estimated from real data.</p>
<p>You will need to run <code>polyester_manuscript.Rmd</code> (the original manuscript) first in order to get some of the dependencies for this code. You will also need to download a few more GEUVADIS BAM files (in addition to the ones needed for <code>polyester_manuscript.Rmd</code>. All needed files are listed below):</p>
<ul>
<li><a href="http://www.ebi.ac.uk/arrayexpress/files/E-GEUV-6/NA06985_accepted_hits.bam">NA06985_accepted_hits.bam</a></li>
<li><a href="http://www.ebi.ac.uk/arrayexpress/files/E-GEUV-6/NA12144_accepted_hits.bam">NA12144_accepted_hits.bam</a></li>
<li><a href="http://www.ebi.ac.uk/arrayexpress/files/E-GEUV-6/NA12776_accepted_hits.bam">NA12776_accepted_hits.bam</a></li>
<li><a href="http://www.ebi.ac.uk/arrayexpress/files/E-GEUV-6/NA12778_accepted_hits.bam">NA12778_accepted_hits.bam</a></li>
<li><a href="http://www.ebi.ac.uk/arrayexpress/files/E-GEUV-6/NA07048_accepted_hits.bam">NA07048_accepted_hits.bam</a></li>
<li><a href="http://www.ebi.ac.uk/arrayexpress/files/E-GEUV-6/NA12760_accepted_hits.bam">NA12760_accepted_hits.bam</a></li>
<li><a href="http://www.ebi.ac.uk/arrayexpress/files/E-GEUV-6/NA12889_accepted_hits.bam">NA12889_accepted_hits.bam</a></li>
<li><a href="http://www.ebi.ac.uk/arrayexpress/files/E-GEUV-6/NA20542_accepted_hits.bam">NA20542_accepted_hits.bam</a></li>
<li><a href="http://www.ebi.ac.uk/arrayexpress/files/E-GEUV-6/NA20772_accepted_hits.bam">NA20772_accepted_hits.bam</a></li>
<li><a href="http://www.ebi.ac.uk/arrayexpress/files/E-GEUV-6/NA20815_accepted_hits.bam">NA20815_accepted_hits.bam</a></li>
<li><a href="http://www.ebi.ac.uk/arrayexpress/files/E-GEUV-6/NA20761_accepted_hits.bam">NA20761_accepted_hits.bam</a></li>
<li><a href="http://www.ebi.ac.uk/arrayexpress/files/E-GEUV-6/NA20798_accepted_hits.bam">NA20798_accepted_hits.bam</a></li>
<li><a href="http://www.ebi.ac.uk/arrayexpress/files/E-GEUV-6/NA20518_accepted_hits.bam">NA20518_accepted_hits.bam</a></li>
<li><a href="http://www.ebi.ac.uk/arrayexpress/files/E-GEUV-6/NA20532_accepted_hits.bam">NA20532_accepted_hits.bam</a></li>
</ul>
<p>You will need to run Cufflinks on these BAM files. You can do this with <code>cufflinks_pre_estimation.sh</code> in the <code>data_sim</code> folder.</p>
<p>First we get everything set up and read in the Chromosome 22 transcript abundances estimated with Cufflinks for the GEUVADIS data set.</p>
<pre><code class="r">library(polyester)
library(ballgown)
library(GenomicRanges)
library(limma)
library(EBSeq)
gtfpath = 'chr22.gtf'
seqpath = 'Homo_sapiens/UCSC/hg19/Sequence/Chromosomes'
ceusamps = c('NA06985', 'NA12144', 'NA12776', 'NA12778', 'NA07048', 'NA12760', 'NA12889')
tsisamps = c('NA20542', 'NA20772', 'NA20815', 'NA20761', 'NA20798', 'NA20518', 'NA20532')
allsamps = c(ceusamps, tsisamps)
m1 = read.table('data_sim/abundances/NA06985/isoforms.fpkm_tracking', header=TRUE)
ntx = nrow(m1)
n = length(allsamps)
fpkmMat = matrix(NA, nrow=ntx, ncol=length(ceusamps)+length(tsisamps))
rownames(fpkmMat) = m1$tracking_id
for(i in seq_along(allsamps)){
m1 = read.table(paste0('data_sim/abundances/', allsamps[i], '/isoforms.fpkm_tracking'), header=TRUE)
o = match(rownames(fpkmMat), m1$tracking_id)
stopifnot(all(m1$trackingid[o] == rownames(fpkmMat)))
fpkmMat[,i] = m1$FPKM[o]
}
colnames(fpkmMat) = allsamps
</code></pre>
<p>We will need the transcript lengths in order to get counts from FPKM measurements:</p>
<pre><code class="r">annot = gffReadGR('chr22.gtf', splitByTranscript=TRUE)
names(annot) = substr(names(annot), 2, nchar(names(annot))-1)
transcript_lengths = sapply(width(annot), sum)
o = match(rownames(fpkmMat), names(annot))
transcript_lengths = transcript_lengths[o]
</code></pre>
<p>I updated Polyester's <code>fpkm_to_counts</code> function to accept a matrix rather than a ballgown object. This change has been incorporated into the devel version of Polyester.</p>
<pre><code class="r">fpkm_to_counts = function(bg=NULL, mat=NULL, tlengths=NULL, mean_rps=100e6, threshold=0){
if(is.null(mat)){
tmeas = as.matrix(ballgown::texpr(bg, 'FPKM'))
tlengths = sapply(width(ballgown::structure(bg)$trans), sum)
}else{
tmeas = mat
stopifnot(!is.null(tlengths))
}
index1 = which(rowMeans(tmeas) >= threshold)
tlengths = tlengths[index1]
counts = tlengths*tmeas[index1,]/1000
counts = round(counts*mean_rps/1e6)
return(counts)
}
</code></pre>
<p>Next we take the GEUVADIS FPKM data, convert it into transcript counts, and calculate the “true” fold change for each isoform in the sample. Expression fold changes were calculated between CEU (Europeans living in Utah) and TSI (Tuscans in Italy) populations.</p>
<pre><code class="r">countmat = fpkm_to_counts(mat=fpkmMat, tlengths=transcript_lengths, mean_rps=5e6)
logcountmat = log2(countmat+1)
pop = rep(c('ceu', 'tsi'), each=7)
x = model.matrix(~pop)
fit = lmFit(logcountmat, x)
truebetas = 2^(fit$coefficients[,2])
</code></pre>
<p>We (arbitrarily) will consider a transcript “truly” differentially expressed if its fold change between the populations is above 1.5, in either direction.</p>
<pre><code class="r">isDE = truebetas > 1.5 | truebetas < 0.67
sim_info = data.frame(transcript_id = names(truebetas), fc=as.numeric(truebetas), isDE=isDE)
write.table(sim_info, quote=FALSE, row.names=FALSE, sep='\t', file='sim_info.txt')
</code></pre>
<p>Cufflinks didn't estimate the abundances for one of the annotated transcripts, so we add a zero row to the count matrix.</p>
<pre><code class="r">countmat = rbind(countmat, rep(0, ncol(countmat)))
rownames(countmat)[926] = 'NR_073460_2'
</code></pre>
<p>Next we put the count matrix in the same order as the annotated transripts will be read in the call to <code>simulate_experiment_countmat</code>. </p>
<pre><code class="r">tt = seq_gtf(gtfpath, seqpath)
names(tt) = substr(names(tt), 2, nchar(names(tt))-1)
o = match(names(tt), rownames(countmat))
countmat = countmat[o,]
</code></pre>
<p>Finally we simulate reads based on the count matrix we derived from the GEUVADIS data:</p>
<pre><code class="r">simulate_experiment_countmat(gtf=gtfpath, seqpath=seqpath, readmat=countmat,
outdir='reads', seed=4831)
</code></pre>
<p>Next, we'll need to process these reads to get simulated abundance estimates. You can do this with the <code>tophat.sh</code> and <code>cufflinks_post_estimation.sh</code> scripts in the <code>data_sim</code> folder. The rest of this code relies on the outputs of these scripts.</p>
<p>After processing the simulated data, we read in the estimated FPKMs from the simulation:</p>
<pre><code class="r">fpkmMatSim = matrix(NA, nrow=nrow(fpkmMat), ncol=n)
m1 = read.table('data_sim/abundances_post/sample01/isoforms.fpkm_tracking', header=TRUE)
rownames(fpkmMatSim) = m1$tracking_id
for(i in 1:14){
m1 = read.table(paste0('data_sim/abundances_post/sample', sprintf('%02d', i), '/isoforms.fpkm_tracking'), header=TRUE)
o = match(rownames(fpkmMatSim), m1$tracking_id)
stopifnot(all(m1$trackingid[o] == rownames(fpkmMatSim)))
fpkmMatSim[,i] = m1$FPKM[o]
}
o = match(rownames(fpkmMat), rownames(fpkmMatSim))
fpkmMatSim = fpkmMatSim[o,]
</code></pre>
<p>Now we can correlate the estimated FPKMs from the simulated data with the FPKMs that were used to generate the count matrix in the first place. </p>
<pre><code class="r">sapply(1:14, function(i) cor(fpkmMat[,i], fpkmMatSim[,i]))
</code></pre>
<pre><code>## [1] 0.02381512 0.85779791 0.87300172 0.47599074 0.87604302 0.85955803
## [7] 0.28769016 0.98353719 0.10043093 0.97357947 0.36858699 0.91965147
## [13] 0.35976548 0.15624747
</code></pre>
<p>The correlations are positive, but some are much stronger than others. Basic plots of the correlations make it clear that there are a few transcripts with extremely high estimated FPKMs in the simulated data, and those high correlations really bring the correlations down. Removing 5 outlying transcripts shows that the other 920 transcripts have very strong correlations between the real data used to generate the count matrix and the simulated FPKMs. Below we show the correlations: each box representes 14 correlations, from the 14 replicates, where each correlation is calculated between the real and simulated FPKMs for the Chromosome 22 transcripts.</p>
<pre><code class="r">outliers = c(725, 204, 842, 843, 580)
outlier_cors = sapply(1:14, function(i) cor(fpkmMat[,i], fpkmMatSim[,i]))
no_outlier_cors = sapply(1:14, function(i) cor(fpkmMat[-outliers, i], fpkmMatSim[-outliers, i]))
hasoutliers = rep(c('outliers', 'no outliers'), each=14)
boxplot(c(outlier_cors, no_outlier_cors) ~ hasoutliers, boxwex=0.5, col='gray', ylab='Correlation')
</code></pre>
<p><img src="" alt="plot of chunk nooutliers"/> </p>
<p>So we have shown that true and simulated FPKMs correlate with each other, which we also show in the main manuscript. We will now show that the estimated differential expression fold changes correlate between the real and simulated data, and that you can use Polyester to evaluate statistial methods for differential expression. Below we estimate differential expression status and fold change between the two populations (CEU/TSI) using EBSeq:</p>
<pre><code class="r">Conditions = rep(c('CEU', 'TSI'), each=7)
IsoformNames = rownames(fpkmMatSim)
iso_gene_relationship = read.table('data_sim/abundances_post/sample01/isoforms.fpkm_tracking', header=TRUE, colClasses=c('character', 'NULL' ,'NULL', 'character', rep('NULL', 9)))
iso_gene_relationship = iso_gene_relationship[match(IsoformNames, iso_gene_relationship$tracking_id),]
sum(IsoformNames != iso_gene_relationship$tracking_id) # expect 0
</code></pre>
<pre><code>## [1] 0
</code></pre>
<pre><code class="r">IsosGeneNames = iso_gene_relationship$gene_id
IsoSizes = MedianNorm(fpkmMatSim)
NgList = GetNg(IsoformNames, IsosGeneNames)
IsoNgTrun = NgList$IsoformNgTrun
IsoEBOut = EBTest(Data=fpkmMatSim, NgVector=IsoNgTrun,
Conditions=as.factor(Conditions), sizeFactors=IsoSizes, maxround=20)
</code></pre>
<pre><code>## Removing transcripts with 75 th quantile < = 10
## 572 transcripts will be tested
</code></pre>
<pre><code>## iteration 1 done
##
## time 4.84
##
## iteration 2 done
##
## time 3.1
##
## iteration 3 done
##
## time 1.12
##
## iteration 4 done
##
## time 1.27
##
## iteration 5 done
##
## time 0.88
##
## iteration 6 done
##
## time 1.31
##
## iteration 7 done
##
## time 1.11
##
## iteration 8 done
##
## time 0.84
##
## iteration 9 done
##
## time 0.94
##
## iteration 10 done
##
## time 0.78
##
## iteration 11 done
##
## time 1.03
##
## iteration 12 done
##
## time 0.92
##
## iteration 13 done
##
## time 0.97
##
## iteration 14 done
##
## time 1
##
## iteration 15 done
##
## time 0.94
##
## iteration 16 done
##
## time 0.84
##
## iteration 17 done
##
## time 1.06
##
## iteration 18 done
##
## time 0.84
##
## iteration 19 done
##
## time 0.78
##
## iteration 20 done
##
## time 1.08
</code></pre>
<pre><code class="r">fold_changes = PostFC(IsoEBOut, SmallNum=1)
fold_changes$Direction #CEU over TSI, so need to flip (CEU was reference in my estimate of "true" fold change)
</code></pre>
<pre><code>## [1] "CEU Over TSI"
</code></pre>
<pre><code class="r">o = match(names(fold_changes$PostFC), sim_info$transcript_id)
true_fc = 1/sim_info$fc[o]
sum(sim_info$transcript_id[o] != names(fold_changes$PostFC))
</code></pre>
<pre><code>## [1] 0
</code></pre>
<pre><code class="r">plot(log2(true_fc), log2(fold_changes$PostFC), xlab='True fold change', ylab='EBSeq estimated fold change', main='True vs. Estimated Fold Changes (log2 scale)')
</code></pre>
<p><img src="" alt="plot of chunk ebseq"/> </p>
<pre><code class="r">cor(log2(true_fc), log2(fold_changes$PostFC))
</code></pre>
<pre><code>## [1] 0.5536229
</code></pre>
<p>So the estimated fold changes are correlated with the fold changes we observed in the data from which we generated the count matrix.</p>
<p>Finally we show that you can make an ROC curve based on this simulation, where true differential expression status is known. Recall that earlier we defined “true” differential expression as transcripts with a fold change of more than 1.5 between populations, in either direction.</p>
<pre><code class="r">reallyde = sim_info[sim_info$isDE,]$transcript_id
notde = sim_info[!sim_info$isDE,]$transcript_id
ppde = IsoEBOut$PPDE
sens = spec = NULL
qaxis = rev(seq(0,1,by=0.01))
for(i in seq_along(qaxis)){
sens[i] = sum(reallyde %in% names(ppde[ppde>qaxis[i]])) / length(reallyde)
spec[i] = sum(notde %in% c(names(ppde[ppde<=qaxis[i]]), setdiff(notde, names(ppde)))) / length(notde)
}
sens[i+1] = 1
spec[i+1] = 0
plot(1-spec, sens, xlab='False Positive Rate', ylab='True Positive Rate', main='ROC Curve', xlim=c(0,1), ylim=c(0,1), type='l', lwd=2, col='purple')
</code></pre>
<p><img src="" alt="plot of chunk roc"/> </p>
<p>This analysis illustrates the use of Polyester to simulate data with known FPKM, fold changes between groups, and differential expression status between groups, using simulated transcript abundances based on real data.</p>
<h2>for reproducibility</h2>
<pre><code class="r">sessionInfo()
</code></pre>
<pre><code>## R version 3.1.1 (2014-07-10)
## Platform: x86_64-apple-darwin13.1.0 (64-bit)
##
## locale:
## [1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
##
## attached base packages:
## [1] stats4 parallel stats graphics grDevices utils datasets
## [8] methods base
##
## other attached packages:
## [1] limma_3.22.1 knitr_1.8.2 EBSeq_1.6.0
## [4] gplots_2.15.0 blockmodeling_0.1.8 Biobase_2.26.0
## [7] GenomicRanges_1.18.3 GenomeInfoDb_1.2.3 IRanges_2.0.0
## [10] S4Vectors_0.4.0 BiocGenerics_0.12.1 ballgown_1.0.1
## [13] polyester_1.0.2 colorout_1.0-3 devtools_1.6.1
##
## loaded via a namespace (and not attached):
## [1] annotate_1.44.0 AnnotationDbi_1.28.1
## [3] base64enc_0.1-2 BatchJobs_1.5
## [5] BBmisc_1.8 BiocParallel_1.0.0
## [7] Biostrings_2.34.0 bitops_1.0-6
## [9] brew_1.0-6 caTools_1.17.1
## [11] checkmate_1.5.0 codetools_0.2-9
## [13] DBI_0.3.1 digest_0.6.4
## [15] evaluate_0.5.5 fail_1.2
## [17] foreach_1.4.2 formatR_1.0
## [19] gdata_2.13.3 genefilter_1.48.1
## [21] GenomicAlignments_1.2.1 grid_3.1.1
## [23] gtools_3.4.1 htmltools_0.2.6
## [25] iterators_1.0.7 KernSmooth_2.23-13
## [27] lattice_0.20-29 markdown_0.7.4
## [29] Matrix_1.1-4 mgcv_1.8-4
## [31] mime_0.2 nlme_3.1-118
## [33] RColorBrewer_1.1-2 RCurl_1.95-4.5
## [35] rmarkdown_0.3.12 Rsamtools_1.18.2
## [37] RSQLite_1.0.0 rtracklayer_1.26.2
## [39] sendmailR_1.2-1 splines_3.1.1
## [41] stringr_0.6.2 survival_2.37-7
## [43] sva_3.12.0 tools_3.1.1
## [45] XML_3.98-1.1 xtable_1.7-4
## [47] XVector_0.6.0 yaml_2.1.13
## [49] zlibbioc_1.12.0
</code></pre>
</body>
</html>