-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathtrainer.c
476 lines (401 loc) · 14.2 KB
/
trainer.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
#include "dnet_sgx_utils.h"
#include "darknet.h"
#include "trainer.h"
#include "checks.h"
#define CIFAR_WEIGHTS "/home/wuyuncheng/Documents/projects/sgx-dnet/App/dnet-out/backup/cifar-weights/"
#define TINY_WEIGHTS "/home/wuyuncheng/Documents/projects/sgx-dnet/App/dnet-out/backup/tiny.weights"
#define MNIST_WEIGHTS "/home/wuyuncheng/Documents/projects/sgx-dnet/App/dnet-out/backup/mnist-weights/"
//global network model
//network *net = NULL;ste
/**
* Pxxx
* The network training avg accuracy should decrease
* as the network learns
* Batch size: the number of data samples read for one training epoch/iteration
* If accuracy not high enough increase max batch
*/
void ecall_trainer(list *sections, data *training_data, int pmem)
{
CHECK_REF_POINTER(sections, sizeof(list));
CHECK_REF_POINTER(training_data, sizeof(data));
/**
* load fence after pointer checks ensures the checks are done
* before any assignment
*/
sgx_lfence();
//train_mnist(sections, training_data, pmem);
train_cifar(sections, training_data, pmem);
}
/**
* Training algorithms for different models
*/
void train_mnist(list *sections, data *training_data, int pmem)
{
//TODO: pointer checks
printf("Training mnist in enclave..\n");
network *net = create_net_in(sections);
printf("Done creating network in enclave...\n");
srand(12345);
float avg_loss = -1;
printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net->learning_rate, net->momentum, net->decay);
int classes = 10;
int N = 60000; //number of training images
int epoch = (*net->seen) / N;
int cur_batch = 0;
float progress = 0;
data train = *training_data;
printf("Max batches: %d\n", net->max_batches);
char *path = MNIST_WEIGHTS;
printf("mnist weights path: %s\n", path);
while (cur_batch < net->max_batches || net->max_batches == 0)
{
cur_batch = get_current_batch(net);
float loss = train_network_sgd(net, train, 1);
if (avg_loss == -1)
avg_loss = loss;
avg_loss = avg_loss * .95 + loss * .05;
progress = ((double)cur_batch / net->max_batches) * 100;
printf("Batch num: %ld, Seen: %.3f: Loss: %f, Avg loss: %f avg, L. rate: %f, Progress: %.2f%% \n",
cur_batch, (float)(*net->seen) / N, loss, avg_loss, get_current_rate(net), progress);
if (cur_batch % 5 == 0)
{
printf("Saving weights to weight file..\n");
save_weights(net, path);
}
}
printf("Done training mnist network..\n");
free_network(net);
}
void train_cifar(list *sections, data *training_data, int pmem)
{
//TODO: pointer checks
network *net = create_net_in(sections);
printf("Done creating network in enclave...\n");
srand(12345);
float avg_loss = -1;
printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net->learning_rate, net->momentum, net->decay);
char **labels = {"airplane", "automobile", "bird", "cat", "deer", "dog", "frog", "horse", "ship", "truck"};
int classes = 10;
int N = 50000;
int epoch = (*net->seen) / N;
data train = *training_data;
float progress = 0;
int cur_batch = 0;
char *path = CIFAR_WEIGHTS;
printf("Max batches: %d\n", net->max_batches);
while (cur_batch < net->max_batches || net->max_batches == 0)
{
cur_batch = get_current_batch(net);
float loss = train_network_sgd(net, train, 1);
if (avg_loss == -1)
avg_loss = loss;
avg_loss = avg_loss * .95 + loss * .05;
progress = ((double)cur_batch / net->max_batches) * 100;
printf("Batch num: %ld, Seen: %.3f: Loss: %f, Avg loss: %f avg, L. rate: %f, Progress: %.2f%% \n",
cur_batch, (float)(*net->seen) / N, loss, avg_loss, get_current_rate(net), progress);
if (cur_batch % 5 == 0)
{
printf("Saving weights to weight file..\n");
save_weights(net, path);
}
}
printf("Done training cifar model..\n");
free_network(net);
}
void ecall_tester(list *sections, data *test_data, int pmem)
{
CHECK_REF_POINTER(sections, sizeof(list));
CHECK_REF_POINTER(test_data, sizeof(data));
/**
* load fence after pointer checks ensures the checks are done
* before any assignment
*/
sgx_lfence();
//test_mnist(sections, test_data, pmem);
test_cifar(sections, test_data, pmem);
}
void ecall_classify(list *sections, list *labels, image *im)
{
CHECK_REF_POINTER(sections, sizeof(list));
CHECK_REF_POINTER(labels, sizeof(list));
CHECK_REF_POINTER(im, sizeof(image));
/**
* load fence after pointer checks ensures the checks are done
* before any assignment
*/
sgx_lfence();
classify_tiny(sections, labels, im, 5);
}
/**
* Test trained mnist model
*/
void test_mnist(list *sections, data *test_data, int pmem)
{
if (pmem)
{
//test on pmem model
return;
}
printf("Testing mnist model..\n");
char *weightfile = MNIST_WEIGHTS;
network *net = load_network(sections, MNIST_WEIGHTS, 0);
if (net == NULL)
{
printf("No neural network in enclave..\n");
return;
}
srand(12345);
float avg_acc = 0;
data test = *test_data;
float *acc = network_accuracies(net, test, 2);
avg_acc += acc[0];
printf("Avg. accuracy: %f%%, %d images\n", avg_acc * 100, test.X.rows);
free_network(net);
/**
* Test multi mnist
*
float avg_acc = 0;
data test = *test_data;
image im;
for (int i = 0; i < test.X.rows; ++i)
{
im = float_to_image(28, 28, 1, test.X.vals[i]);
float pred[10] = {0};
float *p = network_predict(net, im.data);
axpy_cpu(10, 1, p, 1, pred, 1);
flip_image(im);
p = network_predict(net, im.data);
axpy_cpu(10, 1, p, 1, pred, 1);
int index = max_index(pred, 10);
int class = max_index(test.y.vals[i], 10);
if (index == class)
avg_acc += 1;
printf("%4d: %.2f%%\n", i, 100. * avg_acc / (i + 1)); //un/comment to see/hide accuracy progress
}
printf("Overall prediction accuracy: %2f%%\n", 100. * avg_acc / test.X.rows);
free_network(net);
*/
}
void test_cifar(list *sections, data *test_data, int pmem)
{
if (pmem)
{
//test on pmem model
return;
}
char *weightfile = CIFAR_WEIGHTS;
network *net = load_network(sections, CIFAR_WEIGHTS, 0);
srand(12345);
float avg_acc = 0;
float avg_top5 = 0;
data test = *test_data;
float *acc = network_accuracies(net, test, 2);
avg_acc += acc[0];
avg_top5 += acc[1];
printf("top1: %f, xx seconds, %d images\n", avg_acc, test.X.rows);
free_network(net);
}
/**
* Classify an image with Tiny Darknet
* Num of classes in model: 1000
*/
void classify_tiny(list *sections, list *labels, image *img, int top)
{
printf("Begin loading trained network model in enclave..\n");
network *net = load_network(sections, TINY_WEIGHTS, 0);
printf("Done loading trained network model in enclave..\n");
set_batch_network(net, 1);
srand(54321);
//get label names; e.g dog, person, giraffe etc
char **names = (char **)list_to_array(labels);
int *indexes = calloc(top, sizeof(int));
image im = *img;
image r = letterbox_image(im, net->w, net->h);
float *X = r.data;
float *predictions = network_predict(net, X);
if (net->hierarchy)
hierarchy_predictions(predictions, net->outputs, net->hierarchy, 1, 1);
top_k(predictions, net->outputs, top, indexes);
printf("Predictions: \n");
for (int i = 0; i < top; ++i)
{
int index = indexes[i];
printf("%5.2f%%: %s \n", predictions[index] * 100, names[index]);
}
if (r.data != im.data)
free_image(r);
}
//For testing my enclave file I/O ocall wrapper fxns..
void test_fio()
{
ocall_open_file("file.txt", O_WRONLY);
char c[] = "enclave file i/o test";
fwrite(c, strlen(c) + 1, 1, 0);
ocall_close_file();
//dont have fseek ocall so I close and reopen for now :-)
char buffer[100];
ocall_open_file("file.txt", O_RDONLY);
fread(buffer, strlen(c) + 1, 1, 0);
printf("String: %s\n", buffer);
ocall_close_file();
}
/**
* Author: xxx xxx
* Knowledge distillation involves training a smaller network with
* a larger network.
*
*/
/* void train_cifar_distill(char *cfgfile, char *weightfile)
{
srand(time(0));
float avg_loss = -1;
char *base = basecfg(cfgfile);
printf("%s\n", base);
network *net = load_network(cfgfile, weightfile, 0);
printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net->learning_rate, net->momentum, net->decay);
char *backup_directory = "/home/ubuntu/xxx/sgx-dnet/backup/";
int classes = 10;
int N = 50000;
char **labels = {"airplane","automobile","bird","cat","deer","dog","frog","horse","ship","truck"};
int epoch = (*net->seen)/N;
data train = load_all_cifar10();
matrix soft = csv_to_matrix("results/ensemble.csv");
float weight = .9;
scale_matrix(soft, weight);
scale_matrix(train.y, 1. - weight);
matrix_add_matrix(soft, train.y);
while(get_current_batch(net) < net->max_batches || net->max_batches == 0){
clock_t time=clock();
float loss = train_network_sgd(net, train, 1);
if(avg_loss == -1) avg_loss = loss;
avg_loss = avg_loss*.95 + loss*.05;
printf("%ld, %.3f: %f, %f avg, %f rate, %lf seconds, %ld images\n", get_current_batch(net), (float)(*net->seen)/N, loss, avg_loss, get_current_rate(net), sec(clock()-time), *net->seen);
if(*net->seen/N > epoch){
epoch = *net->seen/N;
char buff[256];
sprintf(buff, "%s/%s_%d.weights",backup_directory,base, epoch);
save_weights(net, buff);
}
if(get_current_batch(net)%100 == 0){
char buff[256];
sprintf(buff, "%s/%s.backup",backup_directory,base);
save_weights(net, buff);
}
}
char buff[256];
sprintf(buff, "%s/%s.weights", backup_directory, base);
save_weights(net, buff);
free_network(net);
free_ptrs((void**)labels, classes);
free(base);
free_data(train);
} */
/* void test_cifar_multi(char *filename, char *weightfile)
{
network *net = load_network(filename, weightfile, 0);
set_batch_network(net, 1);
srand(time(0));
float avg_acc = 0;
data test = load_cifar10_data("data/cifar/cifar/test_batch.bin");
int i;
for(i = 0; i < test.X.rows; ++i){
image im = float_to_image(32, 32, 3, test.X.vals[i]);
float pred[10] = {0};
float *p = network_predict(net, im.data);
axpy_cpu(10, 1, p, 1, pred, 1);
flip_image(im);
p = network_predict(net, im.data);
axpy_cpu(10, 1, p, 1, pred, 1);
int index = max_index(pred, 10);
int class = max_index(test.y.vals[i], 10);
if(index == class) avg_acc += 1;
free_image(im);
printf("%4d: %.2f%%\n", i, 100.*avg_acc/(i+1));
}
} */
/* void extract_cifar()
{
char *labels[] = {"airplane","automobile","bird","cat","deer","dog","frog","horse","ship","truck"};
int i;
data train = load_all_cifar10();
data test = load_cifar10_data("data/cifar/cifar-10-batches-bin/test_batch.bin");
for(i = 0; i < train.X.rows; ++i){
image im = float_to_image(32, 32, 3, train.X.vals[i]);
int class = max_index(train.y.vals[i], 10);
char buff[256];
sprintf(buff, "data/cifar/train/%d_%s",i,labels[class]);
save_image_options(im, buff, PNG, 0);
}
for(i = 0; i < test.X.rows; ++i){
image im = float_to_image(32, 32, 3, test.X.vals[i]);
int class = max_index(test.y.vals[i], 10);
char buff[256];
sprintf(buff, "data/cifar/test/%d_%s",i,labels[class]);
save_image_options(im, buff, PNG, 0);
}
} */
/* void test_cifar_csv(char *filename, char *weightfile)
{
network *net = load_network(filename, weightfile, 0);
srand(time(0));
data test = load_cifar10_data("data/cifar/cifar-10-batches-bin/test_batch.bin");
matrix pred = network_predict_data(net, test);
int i;
for(i = 0; i < test.X.rows; ++i){
image im = float_to_image(32, 32, 3, test.X.vals[i]);
flip_image(im);
}
matrix pred2 = network_predict_data(net, test);
scale_matrix(pred, .5);
scale_matrix(pred2, .5);
matrix_add_matrix(pred2, pred);
matrix_to_csv(pred);
fprintf(stderr, "Accuracy: %f\n", matrix_topk_accuracy(test.y, pred, 1));
free_data(test);
} */
/* void test_cifar_csvtrain(char *cfg, char *weights)
{
network *net = load_network(cfg, weights, 0);
srand(time(0));
data test = load_all_cifar10();
matrix pred = network_predict_data(net, test);
int i;
for(i = 0; i < test.X.rows; ++i){
image im = float_to_image(32, 32, 3, test.X.vals[i]);
flip_image(im);
}
matrix pred2 = network_predict_data(net, test);
scale_matrix(pred, .5);
scale_matrix(pred2, .5);
matrix_add_matrix(pred2, pred);
matrix_to_csv(pred);
fprintf(stderr, "Accuracy: %f\n", matrix_topk_accuracy(test.y, pred, 1));
free_data(test);
}
void eval_cifar_csv()
{
data test = load_cifar10_data("data/cifar/cifar-10-batches-bin/test_batch.bin");
matrix pred = csv_to_matrix("results/combined.csv");
fprintf(stderr, "%d %d\n", pred.rows, pred.cols);
fprintf(stderr, "Accuracy: %f\n", matrix_topk_accuracy(test.y, pred, 1));
free_data(test);
free_matrix(pred);
} */
/* void run_cifar(int argc, char **argv)
{
if(argc < 4){
fprintf(stderr, "usage: %s %s [train/test/valid] [cfg] [weights (optional)]\n", argv[0], argv[1]);
return;
}
char *cfg = argv[3];
//if we have 5 args initialize weights else 0
char *weights = (argc > 4) ? argv[4] : 0;
if(0==strcmp(argv[2], "train")) train_cifar(cfg, weights);
else if(0==strcmp(argv[2], "extract")) extract_cifar();
else if(0==strcmp(argv[2], "distill")) train_cifar_distill(cfg, weights);
else if(0==strcmp(argv[2], "test")) test_cifar(cfg, weights);
else if(0==strcmp(argv[2], "multi")) test_cifar_multi(cfg, weights);
else if(0==strcmp(argv[2], "csv")) test_cifar_csv(cfg, weights);
else if(0==strcmp(argv[2], "csvtrain")) test_cifar_csvtrain(cfg, weights);
else if(0==strcmp(argv[2], "eval")) eval_cifar_csv();
} */