forked from johannesgerer/jburkardt-cpp
-
Notifications
You must be signed in to change notification settings - Fork 0
/
prob.html
2578 lines (2533 loc) · 80.4 KB
/
prob.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
<html>
<head>
<title>
PROB - Probability Density Functions
</title>
</head>
<body bgcolor="#EEEEEE" link="#CC0000" alink="#FF3300" vlink="#000055">
<h1 align = "center">
PROB <br> Probability Density Functions
</h1>
<hr>
<p>
<b>PROB</b>
is a C++ library which
handles various discrete and
continuous probability density functions (PDF's).
</p>
<p>
For a discrete variable X, PDF(X) is the probability that the value
X will occur; for a continuous variable, PDF(X) is the probability
density of X, that is, the probability of a value between X and X+dX
is PDF(X) * dX.
</p>
<p>
The corresponding cumulative density functions or "CDF"'s are also
handled. For a discrete or continuous variable, CDF(X) is the
probability that the variable takes on a value less than or equal to X.
</p>
<p>
In some cases, the inverse of the CDF can easily be computed.
If
<pre><b>
X = CDF_INV ( P )
</b></pre>
then we are asserting that the value <b>X</b> has a cumulative
probability density function of <b>P</b>, in other words,
the probability that the variable is less than or equal to <b>X</b>
is <b>P</b>. If the CDF cannot be analytically inverted, there
are simple ways to try to estimate the inverse. Depending on
the PDF, these methods may be rapid and accurate, or not.
</p>
<p>
For most distributions, the <i>mean</i> or "average value" or
"expected value" is also available. For a discrete variable, MEAN
is simply the sum of the products X * PDF(X); for a continuous
variable, MEAN is the integral of X * PDF(X) over the range.
For the distributions covered here, the means are known beforehand,
and no summation or integration is required.
</p>
<p>
For most distributions, the <i>variance</i> is available. For a
discrete variable, the variance is the sum of the products
( X - MEAN )^2 * PDF(X); for a continuous variable, the
variance is the integral of ( X - MEAN )^2 * PDF(X) over the range.
The square root of the variance is known as the <i>standard
deviation</i>. For the distributions covered here, the variances are
often known beforehand, and no summation or integration is required.
</p>
<p>
For many of the distributions, it is possible to repeatedly
request "samples", that is, a pseudorandom sequence of realizations
of the PDF. These samples are always associated with an integer
seed, which controls the calculation. Using the same seed as input
will guarantee the same sample value on output. Ultimately, a
random number generator must be invoked internally. In most cases,
the current code will call a routine called <b>R8_RANDOM</b> or
<b>I4_RANDOM</b>, each of which in turn calls a routine called
<b>R8_UNIFORM_01</b>. You may prefer a different random number generator
for this purpose.
</p>
<h3 align = "center">
Licensing:
</h3>
<p>
The computer code and data files described and made available on this web page
are distributed under
<a href = "../../txt/gnu_lgpl.txt">the GNU LGPL license.</a>
</p>
<h3 align = "center">
Languages:
</h3>
<p>
<b>PROB</b> is available in
<a href = "../../c_src/prob/prob.html">a C version</a> and
<a href = "../../cpp_src/prob/prob.html">a C++ version</a> and
<a href = "../../f77_src/prob/prob.html">a FORTRAN77 version</a> and
<a href = "../../f_src/prob/prob.html">a FORTRAN90 version</a> and
<a href = "../../m_src/prob/prob.html">a MATLAB version</a>.
</p>
<h3 align = "center">
Related Data and Programs:
</h3>
<p>
<a href = "../../cpp_src/asa152/asa152.html">
ASA152</a>,
a C++ library which
evaluates point and cumulative probabilities associated with the
hypergeometric distribution;
this is Applied Statistics Algorithm 152;
</p>
<p>
<a href = "../../cpp_src/asa226/asa226.html">
ASA226</a>,
a C++ library which
evaluates the CDF of the noncentral Beta distribution.
</p>
<p>
<a href = "../../cpp_src/asa241/asa241.html">
ASA241</a>,
a C++ library which
evaluates the percentage points of the normal distribution.
</p>
<p>
<a href = "../../cpp_src/asa243/asa243.html">
ASA243</a>,
a C++ library which
evaluates the CDF of the noncentral T distribution.
</p>
<p>
<a href = "../../cpp_src/asa310/asa310.html">
ASA310</a>,
a C++ library which
computes the CDF of the noncentral Beta distribution.
</p>
<p>
<a href = "../../cpp_src/beta_nc/beta_nc.html">
BETA_NC</a>,
a C++ library which
evaluates the CDF of the noncentral Beta distribution.
</p>
<p>
<a href = "../../cpp_src/cdflib/cdflib.html">
CDFLIB</a>,
a C++ library which
evaluates the cumulative density function (CDF), inverse CDF,
and certain other inverse functions, for distributions including
beta, binomial, chi-square, noncentral chi-square, F, noncentral F,
gamma, negative binomial, normal, Poisson, and students T,
by Barry Brown, James Lovato, Kathy Russell.
</p>
<p>
<a href = "../../cpp_src/discrete_pdf_sample_2d/discrete_pdf_sample_2d.html">
DISCRETE_PDF_SAMPLE_2D</a>,
a C++ program which
demonstrates how to construct a Probability Density Function (PDF)
from a table of sample data, and then to use that PDF to create new samples.
</p>
<p>
<a href = "../../cpp_src/gsl/gsl.html">
GSL</a>,
a C++ library which
includes many routines for evaluating probability distributions.
</p>
<p>
<a href = "../../cpp_src/normal/normal.html">
NORMAL</a>,
a C++ library which
samples the normal distribution.
</p>
<p>
<a href = "../../cpp_src/random_data/random_data.html">
RANDOM_DATA</a>,
a C++ library which
generates sample points for
various probability distributions, spatial dimensions, and geometries;
</p>
<p>
<a href = "../../cpp_src/test_values/test_values.html">
TEST_VALUES</a>,
a C++ library which
contains sample values for a number of distributions.
</p>
<p>
<a href = "../../cpp_src/truncated_normal/truncated_normal.html">
TRUNCATED_NORMAL</a>,
a C++ library which
works with the truncated normal distribution over [A,B], or
[A,+oo) or (-oo,B], returning the probability density function (PDF),
the cumulative density function (CDF), the inverse CDF, the mean,
the variance, and sample values.
</p>
<p>
<a href = "../../cpp_src/uniform/uniform.html">
UNIFORM</a>,
a C++ library which
samples the uniform distribution.
</p>
<p>
<a href = "../../cpp_src/ziggurat/ziggurat.html">
ZIGGURAT</a>,
a C++ program which
generates points from a uniform, normal or exponential distribution, using
the ziggurat method.
</p>
<h3 align = "center">
Reference:
</h3>
<p>
<ol>
<li>
Roger Abernathy, Robert Smith,<br>
Algorithm 724,<br>
Program to Calculate F Percentiles,<br>
ACM Transactions on Mathematical Software,<br>
Volume 19, Number 4, December 1993, pages 481-483.
</li>
<li>
Milton Abramowitz, Irene Stegun,<br>
Handbook of Mathematical Functions,<br>
National Bureau of Standards, 1964,<br>
ISBN: 0-486-61272-4,<br>
LC: QA47.A34.
</li>
<li>
AG Adams,<br>
Algorithm 39:
Areas Under the Normal Curve,<br>
Computer Journal, <br>
Volume 12, 1969, pages 197-198.
</li>
<li>
Joachim Ahrens, Ulrich Dieter,<br>
Generating Gamma Variates by a Modified Rejection Technique,<br>
Communications of the ACM, <br>
Volume 25, Number 1, January 1982, pages 47-54.
</li>
<li>
Joachim Ahrens, Ulrich Dieter,<br>
Computer Methods for Sampling from Gamma, Beta, Poisson and
Binomial Distributions.<br>
Computing,<br>
Volume 12, 1974, pages 223-246.
</li>
<li>
Joachim Ahrens, Klaus-Dieter Kohrt, Ulrich Dieter,<br>
Algorithm 599:
Sampling from Gamma and Poisson Distributions,<br>
ACM Transactions on Mathematical Software,<br>
Volume 9, Number 2, June 1983, pages 255-257.
</li>
<li>
Jerry Banks, editor,<br>
Handbook of Simulation,<br>
Wiley, 1998,<br>
ISBN: 0471134031,<br>
LC: T57.62.H37.
</li>
<li>
JD Beasley, SG Springer,<br>
Algorithm AS 111:
The Percentage Points of the Normal Distribution,<br>
Applied Statistics,<br>
Volume 26, 1977, pages 118-121.
</li>
<li>
Frank Benford,<br>
The Law of Anomalous Numbers,<br>
Proceedings of the American Philosophical Society,<br>
Volume 78, 1938, pages 551-572.
</li>
<li>
Jose Bernardo,<br>
Algorithm AS 103:
Psi ( Digamma ) Function,<br>
Applied Statistics,<br>
Volume 25, Number 3, 1976, pages 315-317.
</li>
<li>
Donald Best, Nicholas Fisher,<br>
Efficient Simulation of the von Mises Distribution,<br>
Applied Statistics,<br>
Volume 28, Number 2, pages 152-157.
</li>
<li>
Donald Best, Roberts,<br>
Algorithm AS 91:
The Percentage Points of the Chi-Squared Distribution,<br>
Applied Statistics,<br>
Volume 24, Number 3, 1975, pages 385-390.
</li>
<li>
Paul Bratley, Bennett Fox, Linus Schrage,<br>
A Guide to Simulation,<br>
Second Edition,<br>
Springer, 1987,<br>
ISBN: 0387964673.
</li>
<li>
William Cody,<br>
An Overview of Software Development for Special Functions,
in Numerical Analysis Dundee, 1975, <br>
edited by GA Watson,<br>
Lecture Notes in Mathematics, 506, <br>
Springer, 1976.
</li>
<li>
William Cody,<br>
Rational Chebyshev Approximations for the Error Function,<br>
Mathematics of Computation,<br>
Volume 23, Number 107, July 1969, pages 631-638.
</li>
<li>
William Cody, Kenneth Hillstrom,<br>
Chebyshev Approximations for the Natural Logarithm of the
Gamma Function,
Mathematics of Computation,<br>
Volume 21, Number 98, April 1967, pages 198-203.
</li>
<li>
BE Cooper,<br>
Algorithm AS 5:
The Integral of the Non-Central T-Distribution,<br>
Applied Statistics,<br>
Volume 17, 1968, page 193.
</li>
<li>
Luc Devroye,<br>
Non-Uniform Random Variate Generation,<br>
Springer, 1986,<br>
ISBN: 0387963057,<br>
LC: QA274.D48
</li>
<li>
Merran Evans, Nicholas Hastings, Brian Peacock,<br>
Statistical Distributions,<br>
Wiley, 2000,<br>
ISBN: 0471371246,<br>
LC: QA273.6E92.
</li>
<li>
Nicholas Fisher,<br>
Statistical Analysis of Circular Data,<br>
Cambridge, 1993,<br>
ISBN: 0521568900,<br>
LC: QA276.F488
</li>
<li>
Nicholas Fisher, Toby Lewis, Brian Embleton,<br>
Statistical Analysis of Spherical Data,<br>
Cambridge, 2003,<br>
ISBN13: 978-0521456999,<br>
LC: QA276.F489
</li>
<li>
Darren Glass, Philip Lowry,<br>
Quasigeometric Distributions and Extra Inning Baseball Games,<br>
Mathematics Magazine,<br>
Volume 81, Number 2, April 2008, pages 127-137.
</li>
<li>
John Hart, Ward Cheney, Charles Lawson, Hans Maehly,
Charles Mesztenyi, John Rice, Henry Thatcher,
Christoph Witzgall,<br>
Computer Approximations,<br>
Wiley, 1968,<br>
LC: QA297.C64.
</li>
<li>
Geoffrey Hill,<br>
Algorithm 518:
Incomplete Bessel Function I0: The Von Mises Distribution,<br>
ACM Transactions on Mathematical Software,<br>
Volume 3, Number 3, September 1977, pages 279-284.
</li>
<li>
Ted Hill,<br>
The First Digit Phenomenon,<br>
American Scientist,<br>
Volume 86, July/August 1998, pages 358-363.
</li>
<li>
Mark Johnson,<br>
Multivariate Statistical Simulation:
A Guid to Selecting and Generating Continuous Multivariate
Distributions,<br>
Wiley, 1987,<br>
ISBN: 0471822906,<br>
LC: QA278.J62
</li>
<li>
Norman Johnson, Samuel Kotz, Narayanaswamy Balakrishnan,<br>
Continuous Univariate Distributions,<br>
Second edition,<br>
Wiley, 1994,<br>
ISBN: 0471584940,<br>
LC: QA273.6.J6
</li>
<li>
Norman Johnson, Samuel Kotz, Adrienne Kemp,<br>
Univariate Discrete Distributions,<br>
Third edition,<br>
Wiley, 2005,<br>
ISBN: 0471272469,<br>
LC: QA273.6.J64
</li>
<li>
William Kennedy, James Gentle,<br>
Statistical Computing,<br>
Marcel Dekker, 1980,<br>
ISBN: 0824768981,<br>
LC: QA276.4 K46.
</li>
<li>
Robert Knop,<br>
Algorithm 441:
Random Deviates from the Dipole Distribution,<br>
ACM Transactions on Mathematical Software,<br>
Volume 16, Number 1, January 1973, page 51.
</li>
<li>
Kalimutha Krishnamoorthy,<br>
Handbook of Statistical Distributions with Applications,<br>
Chapman and Hall, 2006,<br>
ISBN: 1-58488-635-8,<br>
LC: QA273.6.K75.
</li>
<li>
Henry Kucera, Winthrop Francis,<br>
Computational Analysis of Present-Day American English,<br>
Brown University Press, 1967,<br>
LC: PE2839.K8.
</li>
<li>
Kenneth Lange,<br>
Mathematical and Statistical Methods for Genetic Analysis,<br>
Springer, 1997,<br>
ISBN: 0387953892,<br>
LC: QH438.4.M33.L36.
</li>
<li>
Alfred Lotka,<br>
The frequency distribution of scientific productivity,<br>
Journal of the Washington Academy of Sciences,<br>
Volume 16, Number 12, 1926, pages 317-324.
</li>
<li>
KL Majumder, GP Bhattacharjee,<br>
Algorithm AS63:
The incomplete Beta Integral,<br>
Applied Statistics,<br>
Volume 22, number 3, 1973, pages 409-411.
</li>
<li>
Kanti Mardia, Peter Jupp,<br>
Directional Statistics,<br>
Wiley, 2000,<br>
ISBN: 0471953334,<br>
LC: QA276.M335
</li>
<li>
<a href = "http://www.geocities.com/~mikemclaughlin/math_stat/Dists/Compendium.html">
Michael McLaughlin</a><br>
A Compendium of Common Probability Distributions
</li>
<li>
Paul Nahin,<br>
Digital Dice: Computational Solutions to Practical Probability Problems,<br>
Princeton University Press, 2008,<br>
ISBN13: 978-0-691-12698-2,<br>
LC: QA273.25.N34.
</li>
<li>
Keith Ord,<br>
Families of Frequency Distributions,<br>
Lubrecht & Cramer, 1972,<br>
ISBN: 0852641370.
</li>
<li>
Donald Owen,<br>
Tables for Computing Bivariate Normal Probabilities,<br>
The Annals of Mathematical Statistics,<br>
Volume 27, Number 4, December 1956, pages 1075-1090.
</li>
<li>
Frank Powell,<br>
Statistical Tables for Sociology, Biology and Physical Sciences,<br>
Cambridge University Press, 1982,<br>
ISBN: 0521284732,<br>
LC: QA276.25.S73.
</li>
<li>
Sudarshan Raghunathan,<br>
Making a Supercomputer Do What You Want: High Level Tools for
Parallel Programming,<br>
Computing in Science and Engineering,<br>
Volume 8, Number 5, September/October 2006, pages 70-80.
</li>
<li>
Ralph Raimi,<br>
The Peculiar Distribution of First Digits,<br>
Scientific American,<br>
December 1969, pages 109-119.
</li>
<li>
Reuven Rubinstein,<br>
Monte Carlo Optimization, Simulation and Sensitivity of
Queueing Networks,<br>
Krieger, August 1992,<br>
ISBN: 0894647644,<br>
LC: QA298.R79
</li>
<li>
BE Schneider,<br>
Algorithm AS 121:
Trigamma Function,<br>
Applied Statistics,<br>
Volume 27, Number 1, 1978, page 97-99.
</li>
<li>
BL Shea,<br>
Algorithm AS 239:
Chi-squared and Incomplete Gamma Integral,<br>
Applied Statistics,<br>
Volume 37, Number 3, 1988, pages 466-473.
</li>
<li>
Eric Weisstein,<br>
CRC Concise Encyclopedia of Mathematics,<br>
CRC Press, 2002,<br>
Second edition,<br>
ISBN: 1584883472,<br>
LC: QA5.W45
</li>
<li>
Michael Wichura,<br>
Algorithm AS 241:
The Percentage Points of the Normal Distribution,<br>
Applied Statistics,<br>
Volume 37, Number 3, 1988, pages 477-484.
</li>
<li>
Herbert Wilf,<br>
Some New Aspects of the Coupon Collector's Problem,<br>
SIAM Review,<br>
Volume 48, Number 3, September 2006, pages 549-565.
</li>
<li>
ML Wolfson, HV Wright,<br>
Algorithm 160:
Combinatorial of M Things Taken N at a Time,<br>
Communications of the ACM,<br>
Volume 6, Number 4, April 1963, page 161.
</li>
<li>
JC Young, CE Minder,<br>
Algorithm AS 76:
An Algorithm Useful in Calculating Non-Central T and
Bivariate Normal Distributions,<br>
Applied Statistics,<br>
Volume 23, Number 3, 1974, pages 455-457.
</li>
<li>
Daniel Zwillinger, Steven Kokoska,<br>
Standard Probability and Statistical Tables,<br>
CRC Press, 2000,<br>
ISBN: 1-58488-059-7,<br>
LC: QA273.3.Z95.
</li>
</ol>
</p>
<h3 align = "center">
Source Code:
</h3>
<p>
<ul>
<li>
<a href = "prob.cpp">prob.cpp</a>, the source code;
</li>
<li>
<a href = "prob.hpp">prob.hpp</a>, the include file;
</li>
<li>
<a href = "prob.sh">prob.sh</a>,
commands to compile the source code.
</li>
</ul>
</p>
<h3 align = "center">
Examples and Tests:
</h3>
<p>
<ul>
<li>
<a href = "prob_prb.cpp">prob_prb.cpp</a>, the calling program;
</li>
<li>
<a href = "prob_prb.sh">prob_prb.sh</a>,
commands to compile, link and run the calling program;
</li>
<li>
<a href = "prob_prb_output.txt">prob_prb_output.txt</a>,
the output file.
</li>
</ul>
</p>
<h3 align = "center">
List of Routines:
</h3>
<p>
<ul>
<li>
<b>ANGLE_CDF</b> evaluates the Angle CDF.
</li>
<li>
<b>ANGLE_MEAN</b> returns the mean of the Angle PDF.
</li>
<li>
<b>ANGLE_PDF</b> evaluates the Angle PDF.
</li>
<li>
<b>ANGLIT_CDF</b> evaluates the Anglit CDF.
</li>
<li>
<b>ANGLIT_CDF_INV</b> inverts the Anglit CDF.
</li>
<li>
<b>ANGLIT_MEAN</b> returns the mean of the Anglit PDF.
</li>
<li>
<b>ANGLIT_PDF</b> evaluates the Anglit PDF.
</li>
<li>
<b>ANGLIT_SAMPLE</b> samples the Anglit PDF.
</li>
<li>
<b>ANGLIT_VARIANCE</b> returns the variance of the Anglit PDF.
</li>
<li>
<b>ARCSIN_CDF</b> evaluates the Arcsin CDF.
</li>
<li>
<b>ARCSIN_CDF_INV</b> inverts the Arcsin CDF.
</li>
<li>
<b>ARCSIN_CHECK</b> checks the parameter of the Arcsin CDF.
</li>
<li>
<b>ARCSIN_MEAN</b> returns the mean of the Arcsin PDF.
</li>
<li>
<b>ARCSIN_PDF</b> evaluates the Arcsin PDF.
</li>
<li>
<b>ARCSIN_SAMPLE</b> samples the Arcsin PDF.
</li>
<li>
<b>ARCSIN_VARIANCE</b> returns the variance of the Arcsin PDF.
</li>
<li>
<b>BENFORD_PDF</b> returns the Benford probability of one or more significant digits.
</li>
<li>
<b>BERNOULLI_CDF</b> evaluates the Bernoulli CDF.
</li>
<li>
<b>BERNOULLI_CDF_INV</b> inverts the Bernoulli CDF.
</li>
<li>
<b>BERNOULLI_CHECK</b> checks the parameter of the Bernoulli CDF.
</li>
<li>
<b>BERNOULLI_MEAN</b> returns the mean of the Bernoulli PDF.
</li>
<li>
<b>BERNOULLI_PDF</b> evaluates the Bernoulli PDF.
</li>
<li>
<b>BERNOULLI_SAMPLE</b> samples the Bernoulli PDF.
</li>
<li>
<b>BERNOULLI_VARIANCE</b> returns the variance of the Bernoulli PDF.
</li>
<li>
<b>BESSEL_I0</b> evaluates the modified Bessel function I0.
</li>
<li>
<b>BESSEL_I0_VALUES</b> returns some values of the I0 Bessel function.
</li>
<li>
<b>BESSEL_I1</b> evaluates the Bessel I function of order I.
</li>
<li>
<b>BESSEL_I1_VALUES</b> returns some values of the I1 Bessel function.
</li>
<li>
<b>BESSEL_IX_VALUES</b> returns some values of the Ix Bessel function.
</li>
<li>
<b>BETA</b> returns the value of the Beta function.
</li>
<li>
<b>BETA_BINOMIAL_CDF</b> evaluates the Beta Binomial CDF.
</li>
<li>
<b>BETA_BINOMIAL_CDF_INV</b> inverts the Beta Binomial CDF.
</li>
<li>
<b>BETA_BINOMIAL_CHECK</b> checks the parameters of the Beta Binomial PDF.
</li>
<li>
<b>BETA_BINOMIAL_MEAN</b> returns the mean of the Beta Binomial PDF.
</li>
<li>
<b>BETA_BINOMIAL_PDF</b> evaluates the Beta Binomial PDF.
</li>
<li>
<b>BETA_BINOMIAL_SAMPLE</b> samples the Beta Binomial CDF.
</li>
<li>
<b>BETA_BINOMIAL_VARIANCE</b> returns the variance of the Beta Binomial PDF.
</li>
<li>
<b>BETA_CDF</b> evaluates the Beta CDF.
</li>
<li>
<b>BETA_CDF_INV</b> inverts the Beta CDF.
</li>
<li>
<b>BETA_CDF_INV_OLD</b> inverts the Beta CDF.
</li>
<li>
<b>BETA_CHECK</b> checks the parameters of the Beta PDF.
</li>
<li>
<b>BETA_CDF_VALUES</b> returns some values of the Beta CDF.
</li>
<li>
<b>BETA_INC</b> returns the value of the incomplete Beta function.
</li>
<li>
<b>BETA_INC_VALUES</b> returns some values of the incomplete Beta function.
</li>
<li>
<b>BETA_MEAN</b> returns the mean of the Beta PDF.
</li>
<li>
<b>BETA_PDF</b> evaluates the Beta PDF.
</li>
<li>
<b>BETA_SAMPLE</b> samples the Beta PDF.
</li>
<li>
<b>BETA_VARIANCE</b> returns the variance of the Beta PDF.
</li>
<li>
<b>BINOMIAL_CDF</b> evaluates the Binomial CDF.
</li>
<li>
<b>BINOMIAL_CDF_VALUES</b> returns some values of the binomial CDF.
</li>
<li>
<b>BINOMIAL_CDF_INV</b> inverts the Binomial CDF.
</li>
<li>
<b>BINOMIAL_CHECK</b> checks the parameter of the Binomial PDF.
</li>
<li>
<b>BINOMIAL_COEF</b> computes the Binomial coefficient C(N,K).
</li>
<li>
<b>BINOMIAL_COEF_LOG</b> computes the logarithm of the Binomial coefficient.
</li>
<li>
<b>BINOMIAL_MEAN</b> returns the mean of the Binomial PDF.
</li>
<li>
<b>BINOMIAL_PDF</b> evaluates the Binomial PDF.
</li>
<li>
<b>BINOMIAL_SAMPLE</b> samples the Binomial PDF.
</li>
<li>
<b>BINOMIAL_VARIANCE</b> returns the variance of the Binomial PDF.
</li>
<li>
<b>BIRTHDAY_CDF</b> returns the Birthday Concurrence CDF.
</li>
<li>
<b>BIRTHDAY_CDF_INV</b> inverts the Birthday Concurrence CDF.
</li>
<li>
<b>BIRTHDAY_PDF</b> returns the Birthday Concurrence PDF.
</li>
<li>
<b>BRADFORD_CDF</b> evaluates the Bradford CDF.
</li>
<li>
<b>BRADFORD_CDF_INV</b> inverts the Bradford CDF.
</li>
<li>
<b>BRADFORD_CHECK</b> checks the parameters of the Bradford PDF.
</li>
<li>
<b>BRADFORD_MEAN</b> returns the mean of the Bradford PDF.
</li>
<li>
<b>BRADFORD_PDF</b> evaluates the Bradford PDF.
</li>
<li>
<b>BRADFORD_SAMPLE</b> samples the Bradford PDF.
</li>
<li>
<b>BRADFORD_VARIANCE</b> returns the variance of the Bradford PDF.
</li>
<li>
<b>BUFFON_LAPLACE_PDF</b> evaluates the Buffon-Laplace PDF.
</li>
<li>
<b>BUFFON_LAPLACE_SIMULATE</b> simulates a Buffon-Laplace needle experiment.
</li>
<li>
<b>BUFFON_PDF</b> evaluates the Buffon PDF.
</li>
<li>
<b>BUFFON_SIMULATE</b> simulates a Buffon needle experiment.
</li>
<li>
<b>BURR_CDF</b> evaluates the Burr CDF.
</li>
<li>
<b>BURR_CDF_INV</b> inverts the Burr CDF.
</li>
<li>
<b>BURR_CHECK</b> checks the parameters of the Burr CDF.
</li>
<li>
<b>BURR_MEAN</b> returns the mean of the Burr PDF.
</li>
<li>
<b>BURR_PDF</b> evaluates the Burr PDF.
</li>
<li>
<b>BURR_SAMPLE</b> samples the Burr PDF.
</li>
<li>
<b>BURR_VARIANCE</b> returns the variance of the Burr PDF.
</li>
<li>
<b>CARDIOID_CDF</b> evaluates the Cardioid CDF.
</li>
<li>
<b>CARDIOID_CDF_INV</b> inverts the Cardioid CDF.
</li>
<li>
<b>CARDIOID_CHECK</b> checks the parameters of the Cardioid CDF.
</li>
<li>
<b>CARDIOID_MEAN</b> returns the mean of the Cardioid PDF.
</li>
<li>
<b>CARDIOID_PDF</b> evaluates the Cardioid PDF.
</li>
<li>
<b>CARDIOID_SAMPLE</b> samples the Cardioid PDF.
</li>
<li>
<b>CARDIOID_VARIANCE</b> returns the variance of the Cardioid PDF.
</li>
<li>
<b>CAUCHY_CDF</b> evaluates the Cauchy CDF.
</li>
<li>
<b>CAUCHY_CDF_INV</b> inverts the Cauchy CDF.
</li>
<li>
<b>CAUCHY_CDF_VALUES</b> returns some values of the Cauchy CDF.
</li>
<li>
<b>CAUCHY_CHECK</b> checks the parameters of the Cauchy CDF.
</li>
<li>
<b>CAUCHY_MEAN</b> returns the mean of the Cauchy PDF.
</li>
<li>
<b>CAUCHY_PDF</b> evaluates the Cauchy PDF.
</li>
<li>
<b>CAUCHY_SAMPLE</b> samples the Cauchy PDF.
</li>
<li>
<b>CAUCHY_VARIANCE</b> returns the variance of the Cauchy PDF.
</li>
<li>
<b>CHI_CDF</b> evaluates the Chi CDF.
</li>
<li>
<b>CHI_CDF_INV</b> inverts the Chi CDF.
</li>
<li>
<b>CHI_CHECK</b> checks the parameters of the Chi CDF.
</li>
<li>
<b>CHI_MEAN</b> returns the mean of the Chi PDF.
</li>
<li>
<b>CHI_PDF</b> evaluates the Chi PDF.
</li>
<li>
<b>CHI_SAMPLE</b> samples the Chi PDF.
</li>
<li>
<b>CHI_VARIANCE</b> returns the variance of the Chi PDF.
</li>
<li>
<b>CHI_SQUARE_CDF</b> evaluates the Chi squared CDF.
</li>
<li>
<b>CHI_SQUARE_CDF_INV</b> inverts the Chi squared PDF.
</li>
<li>
<b>CHI_SQUARE_CDF_VALUES</b> returns some values of the Chi-Square CDF.
</li>
<li>
<b>CHI_SQUARE_CHECK</b> checks the parameter of the central Chi squared PDF.
</li>
<li>
<b>CHI_SQUARE_MEAN</b> returns the mean of the central Chi squared PDF.
</li>
<li>
<b>CHI_SQUARE_PDF</b> evaluates the central Chi squared PDF.
</li>
<li>
<b>CHI_SQUARE_SAMPLE</b> samples the central Chi squared PDF.
</li>
<li>
<b>CHI_SQUARE_VARIANCE</b> returns the variance of the central Chi squared PDF.
</li>
<li>
<b>CHI_SQUARE_NONCENTRAL_CDF_VALUES</b> returns values of the noncentral chi CDF.
</li>
<li>
<b>CHI_SQUARE_NONCENTRAL_CHECK</b> checks the parameters of the noncentral Chi Squared PDF.
</li>
<li>
<b>CHI_SQUARE_NONCENTRAL_MEAN</b> returns the mean of the noncentral Chi squared PDF.
</li>
<li>
<b>CHI_SQUARE_NONCENTRAL_SAMPLE</b> samples the noncentral Chi squared PDF.
</li>
<li>
<b>CHI_SQUARE_NONCENTRAL_VARIANCE</b> returns the variance of the noncentral Chi squared PDF.
</li>
<li>
<b>CIRCLE_SAMPLE</b> samples points from a circle.
</li>
<li>
<b>CIRCULAR_NORMAL_01_MEAN</b> returns the mean of the Circular Normal 01 PDF.
</li>
<li>
<b>CIRCULAR_NORMAL_01_PDF</b> evaluates the Circular Normal 01 PDF.
</li>
<li>
<b>CIRCULAR_NORMAL_01_SAMPLE</b> samples the Circular Normal 01 PDF.
</li>
<li>
<b>CIRCULAR_NORMAL_01_VARIANCE</b> returns the variance of the Circular Normal 01 PDF.
</li>
<li>
<b>CIRCULAR_NORMAL_MEAN</b> returns the mean of the Circular Normal PDF.
</li>
<li>