forked from johannesgerer/jburkardt-cpp
-
Notifications
You must be signed in to change notification settings - Fork 0
/
tetrahedron_monte_carlo.html
405 lines (352 loc) · 12.2 KB
/
tetrahedron_monte_carlo.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
<html>
<head>
<title>
TETRAHEDRON_MONTE_CARLO - Monte Carlo Integral Estimates over the Unit Tetrahedron in 3D
</title>
</head>
<body bgcolor="#EEEEEE" link="#CC0000" alink="#FF3300" vlink="#000055">
<h1 align = "center">
TETRAHEDRON_MONTE_CARLO <br> Monte Carlo Integral Estimates over the Unit Tetrahedron in 3D
</h1>
<hr>
<p>
<b>TETRAHEDRON_MONTE_CARLO</b>
is a C++ library which
uses the Monte Carlo method to estimate the integral of a function F(X,Y,Z)
over the interior of the unit tetrahedron in 3D.
</p>
<p>
The interior of the unit tetrahedron in 3D is defined by the constraints:
<pre>
0 <= X
0 <= Y
0 <= Z
X + Y + Z <= 1
</pre>
The functions F(X,Y,Z) are monomials, having the form
<pre>
F(X,Y,Z) = X^E(1) * Y^E(2) * Z^E(3)
</pre>
where the exponents are nonnegative integers.
</p>
<h3 align = "center">
Licensing:
</h3>
<p>
The computer code and data files described and made available on this web page
are distributed under
<a href = "../../txt/gnu_lgpl.txt">the GNU LGPL license.</a>
</p>
<h3 align = "center">
Languages:
</h3>
<p>
<b>TETRAHEDRON_MONTE_CARLO</b> is available in
<a href = "../../c_src/tetrahedron_monte_carlo/tetrahedron_monte_carlo.html">a C version</a> and
<a href = "../../cpp_src/tetrahedron_monte_carlo/tetrahedron_monte_carlo.html">a C++ version</a> and
<a href = "../../f77_src/tetrahedron_monte_carlo/tetrahedron_monte_carlo.html">a FORTRAN77 version</a> and
<a href = "../../f_src/tetrahedron_monte_carlo/tetrahedron_monte_carlo.html">a FORTRAN90 version</a> and
<a href = "../../m_src/tetrahedron_monte_carlo/tetrahedron_monte_carlo.html">a MATLAB version</a>.
</p>
<h3 align = "center">
Related Data and Programs:
</h3>
<p>
<a href = "../../cpp_src/ball_monte_carlo/ball_monte_carlo.html">
BALL_MONTE_CARLO</a>,
a C++ library which
applies a Monte Carlo method to estimate integrals of a function
over the interior of the unit ball in 3D;
</p>
<p>
<a href = "../../cpp_src/circle_monte_carlo/circle_monte_carlo.html">
CIRCLE_MONTE_CARLO</a>,
a C++ library which
applies a Monte Carlo method to estimate the integral of a function
on the circumference of the unit circle in 2D;
</p>
<p>
<a href = "../../cpp_src/cube_monte_carlo/cube_monte_carlo.html">
CUBE_MONTE_CARLO</a>,
a C++ library which
applies a Monte Carlo method to estimate the integral of a function
over the interior of the unit cube in 3D;
</p>
<p>
<a href = "../../cpp_src/disk_monte_carlo/disk_monte_carlo.html">
DISK_MONTE_CARLO</a>,
a C++ library which
applies a Monte Carlo method to estimate the integral of a function
over the interior of the unit disk in 2D;
</p>
<p>
<a href = "../../cpp_src/ellipse_monte_carlo/ellipse_monte_carlo.html">
ELLIPSE_MONTE_CARLO</a>
a C++ library which
uses the Monte Carlo method to estimate the value of integrals
over the interior of an ellipse in 2D.
</p>
<p>
<a href = "../../cpp_src/ellipsoid_monte_carlo/ellipsoid_monte_carlo.html">
ELLIPSOID_MONTE_CARLO</a>
a C++ library which
uses the Monte Carlo method to estimate the value of integrals
over the interior of an ellipsoid in M dimensions.
</p>
<p>
<a href = "../../cpp_src/hyperball_monte_carlo/hyperball_monte_carlo.html">
HYPERBALL_MONTE_CARLO</a>,
a C++ library which
applies a Monte Carlo method to estimate the integral of a function
over the interior of the unit hyperball in M dimensions;
</p>
<p>
<a href = "../../cpp_src/hyperball_volume_monte_carlo/hyperball_volume_monte_carlo.html">
HYPERBALL_VOLUME_MONTE_CARLO</a>,
a C++ program which
applies a Monte Carlo method to estimate the volume
of the unit hyperball in M dimensions;
</p>
<p>
<a href = "../../cpp_src/hypercube_monte_carlo/hypercube_monte_carlo.html">
HYPERCUBE_MONTE_CARLO</a>,
a C++ library which
applies a Monte Carlo method to estimate the integral of a function
over the interior of the unit hypercube in M dimensions.
</p>
<p>
<a href = "../../cpp_src/hypersphere_monte_carlo/hypersphere_monte_carlo.html">
HYPERSPHERE_MONTE_CARLO</a>,
a C++ library which
applies a Monte Carlo method to estimate the integral of a function
on the surface of the unit sphere in M dimensions;
</p>
<p>
<a href = "../../cpp_src/line_monte_carlo/line_monte_carlo.html">
LINE_MONTE_CARLO</a>,
a C++ library which
uses the Monte Carlo method to estimate integrals
over the length of the unit line in 1D.
</p>
<p>
<a href = "../../cpp_src/polygon_monte_carlo/polygon_monte_carlo.html">
POLYGON_MONTE_CARLO</a>,
a C++ library which
applies a Monte Carlo method to estimate the integral of a function
over the interior of a polygon in 2D.
</p>
<p>
<a href = "../../cpp_src/pyramid_monte_carlo/pyramid_monte_carlo.html">
PYRAMID_MONTE_CARLO</a>,
a C++ library which
applies a Monte Carlo method to estimate integrals of a function
over the interior of the unit pyramid in 3D;
</p>
<p>
<a href = "../../cpp_src/simplex_gm_rule/simplex_gm_rule.html">
SIMPLEX_GM_RULE</a>,
a C++ library which
defines Grundmann-Moeller quadrature rules
over the interior of a triangle in 2D, a tetrahedron in 3D, or
over the interior of the simplex in M dimensions.
</p>
<p>
<a href = "../../cpp_src/simplex_monte_carlo/simplex_monte_carlo.html">
SIMPLEX_MONTE_CARLO</a>,
a C++ library which
uses the Monte Carlo method to estimate integrals
over the interior of the unit simplex in M dimensions.
</p>
<p>
<a href = "../../cpp_src/sphere_monte_carlo/sphere_monte_carlo.html">
SPHERE_MONTE_CARLO</a>,
a C++ library which
uses the Monte Carlo method to estimate integrals
over the surface of the unit sphere in 3D.
</p>
<p>
<a href = "../../cpp_src/sphere_triangle_monte_carlo/sphere_triangle_monte_carlo.html">
SPHERE_TRIANGLE_MONTE_CARLO</a>,
a C++ library which
applies a Monte Carlo method to estimate the integral of a function
over a spherical triangle on the surface of the unit sphere in 3D;
</p>
<p>
<a href = "../../cpp_src/square_monte_carlo/square_monte_carlo.html">
SQUARE_MONTE_CARLO</a>,
a C++ library which
applies a Monte Carlo method to estimate the integral of a function
over the interior of the unit square in 2D.
</p>
<p>
<a href = "../../cpp_src/tetrahedron_arbq_rule/tetrahedron_arbq_rule.html">
TETRAHEDRON_ARBQ_RULE</a>,
a C++ library which
returns quadrature rules,
with exactness up to total degree 15,
over the interior of a tetrahedron in 3D,
by Hong Xiao and Zydrunas Gimbutas.
</p>
<p>
<a href = "../../cpp_src/tetrahedron_exactness/tetrahedron_exactness.html">
TETRAHEDRON_EXACTNESS</a>,
a C++ program which
investigates the monomial exactness of a quadrature rule
over the interior of a tetrahedron in 3D.
</p>
<p>
<a href = "../../cpp_src/tetrahedron_felippa_rule/tetrahedron_felippa_rule.html">
TETRAHEDRON_FELIPPA_RULE</a>,
a C++ library which
returns Felippa's quadratures rules for approximating integrals
over the interior of a tetrahedron in 3D.
</p>
<p>
<a href = "../../cpp_src/tetrahedron_integrals/tetrahedron_integrals.html">
TETRAHEDRON_INTEGRALS</a>,
a C++ library which
returns the exact value of the integral of any monomial
over the interior of the unit tetrahedron in 3D.
</p>
<p>
<a href = "../../cpp_src/tetrahedron_keast_rule/tetrahedron_keast_rule.html">
TETRAHEDRON_KEAST_RULE</a>,
a C++ library which
defines ten quadrature rules, with exactness degrees 0 through 8,
over the interior of a tetrahedron in 3D.
</p>
<p>
<a href = "../../cpp_src/tetrahedron_ncc_rule/tetrahedron_ncc_rule.html">
TETRAHEDRON_NCC_RULE</a>,
a C++ library which
defines Newton-Cotes Closed (NCC) quadrature rules
over the interior of a tetrahedron in 3D.
</p>
<p>
<a href = "../../cpp_src/tetrahedron_nco_rule/tetrahedron_nco_rule.html">
TETRAHEDRON_NCO_RULE</a>,
a C++ library which
defines Newton-Cotes Open (NCO) quadrature rules
over the interior of a tetrahedron in 3D.
</p>
<p>
<a href = "../../cpp_src/triangle_monte_carlo/triangle_monte_carlo.html">
TRIANGLE_MONTE_CARLO</a>,
a C++ library which
uses the Monte Carlo method to estimate integrals
over the interior of a triangle in 2D.
</p>
<p>
<a href = "../../cpp_src/wedge_monte_carlo/wedge_monte_carlo.html">
WEDGE_MONTE_CARLO</a>,
a C++ library which
uses the Monte Carlo method to estimate integrals
over the interior of the unit wedge in 3D.
</p>
<h3 align = "center">
Reference:
</h3>
<p>
<ol>
<li>
Claudio Rocchini, Paolo Cignoni,<br>
Generating Random Points in a Tetrahedron,<br>
Journal of Graphics Tools,<br>
Volume 5, Number 4, 2000, pages 9-12.
</li>
<li>
Reuven Rubinstein,<br>
Monte Carlo Optimization, Simulation and Sensitivity of
Queueing Networks,<br>
Krieger, 1992,<br>
ISBN: 0894647644,<br>
LC: QA298.R79.
</li>
<li>
Greg Turk,<br>
Generating Random Points in a Triangle,<br>
in Graphics Gems I,<br>
edited by Andrew Glassner,<br>
AP Professional, 1990,<br>
ISBN: 0122861663,<br>
LC: T385.G697
</li>
</ol>
</p>
<h3 align = "center">
Source Code:
</h3>
<p>
<ul>
<li>
<a href = "tetrahedron_monte_carlo.cpp">tetrahedron_monte_carlo.cpp</a>, the source code.
</li>
<li>
<a href = "tetrahedron_monte_carlo.hpp">tetrahedron_monte_carlo.hpp</a>,
the include file.
</li>
<li>
<a href = "tetrahedron_monte_carlo.sh">tetrahedron_monte_carlo.sh</a>,
commands to compile the source code.
</li>
</ul>
</p>
<h3 align = "center">
Examples and Tests:
</h3>
<p>
<ul>
<li>
<a href = "tetrahedron_monte_carlo_prb.cpp">tetrahedron_monte_carlo_prb.cpp</a>,
a sample calling program.
</li>
<li>
<a href = "tetrahedron_monte_carlo_prb.sh">tetrahedron_monte_carlo_prb.sh</a>,
commands to compile and run the sample program.
</li>
<li>
<a href = "tetrahedron_monte_carlo_prb_output.txt">tetrahedron_monte_carlo_prb_output.txt</a>,
the output file.
</li>
</ul>
</p>
<h3 align = "center">
List of Routines:
</h3>
<p>
<ul>
<li>
<b>MONOMIAL_VALUE</b> evaluates a monomial.
</li>
<li>
<b>R8VEC_SUM</b> returns the sum of an R8VEC.
</li>
<li>
<b>R8VEC_UNIFORM_01_NEW</b> returns a unit pseudorandom R8VEC.
</li>
<li>
<b>TETRAHEDRON01_MONOMIAL_INTEGRAL:</b> integrals in the unit tetrahedron in 3D.
</li>
<li>
<b>TETRAHEDRON01_SAMPLE</b> samples the unit tetrahedron in 3D.
</li>
<li>
<b>TETRAHEDRON01_VOLUME</b> returns the volume of the unit tetrahedron.
</li>
<li>
<b>TIMESTAMP</b> prints the current YMDHMS date as a time stamp.
</li>
</ul>
</p>
<p>
You can go up one level to <a href = "../cpp_src.html">
the C++ source codes</a>.
</p>
<hr>
<i>
Last revised on 15 January 2014.
</i>
<!-- John Burkardt -->
</body>
<!-- Initial HTML skeleton created by HTMLINDEX. -->
</html>