-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathactivations.py
59 lines (43 loc) · 1.71 KB
/
activations.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
import torch
from layers import Layer
class Activation(Layer):
def __init__(self, activation, activation_prime):
self.activation = activation
self.activation_prime = activation_prime
def forward(self, input) -> torch.Tensor:
self.input = input
return self.activation(input)
def backward(self, output_gradient, optimizer) -> torch.Tensor:
return torch.mul(output_gradient, self.activation_prime(self.input))
class Sigmoid(Activation):
def __init__(self):
super().__init__(
activation=self.activation,
activation_prime=self.activation_prime
)
def activation(self, input) -> torch.Tensor:
return 1 / (1 + torch.exp(-input))
def activation_prime(self, input) -> torch.Tensor:
return self.activation(input) * (1 - self.activation(input))
class ReLU(Activation):
def __init__(self, leak=0):
self.leak = leak
super().__init__(
activation=self.activation,
activation_prime=self.activation_prime
)
def activation(self, input) -> torch.Tensor:
return torch.maximum(input, torch.tensor(self.leak) * input)
def activation_prime(self, input) -> torch.Tensor:
return torch.maximum(input > 0, torch.tensor(self.leak))
class Softmax(Activation):
def __init__(self):
super().__init__(
activation=self.activation,
activation_prime=self.activation_prime
)
def activation(self, input) -> torch.Tensor:
exp_x = torch.exp(input - torch.max(input, axis=1, keepdim=True)[0])
return exp_x / torch.sum(exp_x, axis=1, keepdim=True)
def activation_prime(self, input) -> torch.Tensor:
return 1