-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
165 lines (133 loc) · 6.11 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
import argparse
import copy
import os
import torch
import numpy as np
from torch import nn, optim
from torch.autograd import Variable
from tensorboardX import SummaryWriter
from time import localtime, strftime
from model.BIMPM_new import BIMPM
from model.utils import SNLI, Quora
from test import test
def train(args, data):
model = BIMPM(args, data)
if args.gpu > -1:
model.to(args.device)
if args.fix_emb:
# print(args.fix_emb)
model.word_emb.weight.required_grad = False
parameters = filter(lambda p: p.requires_grad, model.parameters())
optimizer = optim.Adam(parameters, lr=args.learning_rate)
criterion = nn.CrossEntropyLoss()
writer = SummaryWriter(log_dir='runs/' + args.model_time)
model.train()
# loss, last_epoch = 0, -1
max_dev_acc, max_test_acc = 0, 0
iterator = data.train_iter
for epoch in range(args.epochs):
iterator.init_epoch()
n_correct, n_total = 0, 0
all_losses = []
print('epoch:', epoch+1)
for i, batch in enumerate(iterator):
# present_epoch = int(iterator.epoch)
# if present_epoch == args.epoch:
# break
# if present_epoch > last_epoch:
# print('epoch:', present_epoch + 1)
# last_epoch = present_epoch
if args.data_type == 'SNLI':
s1, s2 = 'premise', 'hypothesis'
else:
s1, s2 = 'q1', 'q2'
s1, s2 = getattr(batch, s1), getattr(batch, s2)
# limit the lengths of input sentences up to max_sent_len
if args.max_sent_len >= 0:
if s1.size()[1] > args.max_sent_len:
s1 = s1[:, :args.max_sent_len]
if s2.size()[1] > args.max_sent_len:
s2 = s2[:, :args.max_sent_len]
kwargs = {'p': s1, 'h': s2}
if args.use_char_emb:
char_p = Variable(torch.LongTensor(data.characterize(s1)))
char_h = Variable(torch.LongTensor(data.characterize(s2)))
if args.gpu > -1:
char_p = char_p.to(args.device)
char_h = char_h.to(args.device)
kwargs['char_p'] = char_p
kwargs['char_h'] = char_h
pred = model(**kwargs)
optimizer.zero_grad()
batch_loss = criterion(pred, batch.label)
all_losses.append(batch_loss.item())
batch_loss.backward()
optimizer.step()
_, pred = pred.max(dim=1)
n_correct += (pred == batch.label).sum().float()
n_total += len(pred)
train_acc = n_correct / n_total
if (i + 1) % args.print_freq == 0:
dev_loss, dev_acc = test(model, args, data, mode='dev')
test_loss, test_acc = test(model, args, data)
train_loss = np.mean(all_losses)
c = (i + 1) // args.print_freq
writer.add_scalar('loss/train', train_loss, c)
writer.add_scalar('loss/dev', dev_loss, c)
writer.add_scalar('loss/test', test_loss, c)
writer.add_scalar('acc/train', train_acc, c)
writer.add_scalar('acc/dev', dev_acc, c)
writer.add_scalar('acc/test', test_acc, c)
print(f'train loss: {train_loss:.3f} / dev loss: {dev_loss:.3f} / test loss: {test_loss:.3f}'
f' / train acc: {train_acc:.3f} / dev acc: {dev_acc:.3f} / test acc: {test_acc:.3f}')
if dev_acc > max_dev_acc:
max_dev_acc = dev_acc
max_test_acc = test_acc
best_model = copy.deepcopy(model)
# torch.save(best_model.state_dict(), f'saved_models/BIBPM_{args.data_type}_{dev_acc}.pt')
model.train()
writer.close()
print(f'max dev acc: {max_dev_acc:.3f} / max test acc: {max_test_acc:.3f}')
return best_model, max_dev_acc
def main():
parser = argparse.ArgumentParser()
parser.add_argument('--batch-size', default=32, type=int)
parser.add_argument('--char-dim', default=20, type=int)
parser.add_argument('--char-hidden-size', default=50, type=int)
parser.add_argument('--data-type', default='Quora', help='available: SNLI or Quora')
parser.add_argument('--dropout', default=0.3, type=float)
parser.add_argument('--epochs', default=10, type=int)
parser.add_argument('--gpu', default=0, type=int)
parser.add_argument('--hidden-size', default=100, type=int)
parser.add_argument('--learning-rate', default=0.001, type=float)
parser.add_argument('--max-sent-len', default=-1, type=int,
help='max length of input sentences model can accept, if -1, it accepts any length')
parser.add_argument('--num-perspective', default=20, type=int)
parser.add_argument('--print-freq', default=500, type=int)
parser.add_argument('--use-char-emb', default=False, action='store_true')
parser.add_argument('--word-dim', default=300, type=int)
parser.add_argument('--train_embed', action='store_false', dest='fix_emb')
args = parser.parse_args()
args.device = torch.device('cuda:{}'.format(args.gpu) if torch.cuda.is_available() else 'cpu')
print(args.use_char_emb)
if args.data_type == 'SNLI':
print('loading SNLI data...')
data = SNLI(args)
elif args.data_type == 'Quora':
print('loading Quora data...')
data = Quora(args)
else:
raise NotImplementedError('only SNLI or Quora data is possible')
setattr(args, 'char_vocab_size', len(data.char_vocab))
setattr(args, 'word_vocab_size', len(data.TEXT.vocab))
setattr(args, 'class_size', len(data.LABEL.vocab))
setattr(args, 'max_word_len', data.max_word_len)
setattr(args, 'model_time', strftime('%H:%M:%S', localtime()))
print('training start!')
best_model, max_dev_acc = train(args, data)
if not os.path.exists('saved_models'):
os.makedirs('saved_models')
torch.save(best_model.state_dict(), f'saved_models/BIBPM_{args.data_type}_{max_dev_acc}.pt')
print('training finished!')
if __name__ == '__main__':
main()