forked from ribault/CFT-Review
-
Notifications
You must be signed in to change notification settings - Fork 0
/
minimal.tex
1897 lines (1648 loc) · 119 KB
/
minimal.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
\documentclass[12pt, a4paper]{article}
\raggedbottom
\RequirePackage[l2tabu, orthodox]{nag}
\usepackage[top=20mm,bottom=20mm,left=25mm,right=25mm]{geometry}
%\usepackage{showkeys}
\usepackage{amsmath,amssymb,amsfonts}
\usepackage{centernot}
\usepackage{underbracket}
\usepackage[nottoc]{tocbibind}
\usepackage{pgf}
\usepackage{tikz}
\usepackage{multirow}
\usepackage{pgf}
\usepackage{tikz}
\usepackage{xcolor}
% Syntax: \colorboxed[<color model>]{<color specification>}{<math formula>}
\newcommand*{\colorboxed}{}
\def\colorboxed#1#{%
\colorboxedAux{#1}%
}
\newcommand*{\colorboxedAux}[3]{%
% #1: optional argument for color model
% #2: color specification
% #3: formula
\begingroup
\colorlet{cb@saved}{.}%
\color#1{#2}%
\boxed{%
\color{cb@saved}%
#3%
}%
\endgroup
}
\usepackage[most]{tcolorbox}
\tcbset{
frame code={}
center title,
left=0pt,
right=0pt,
top=0pt,
bottom=0pt,
colback=green!15,
colframe=white,
% width=\dimexpr\textwidth\relax,
enlarge left by=0mm,
% boxsep=5pt,
arc=0pt,outer arc=0pt,
breakable,
}
\usepackage{amsthm}
\usepackage{thmtools}
%\usepackage{thm-restate} This package does not interact very smoothly with \theoremstyle and \listoftheorems
\newtheoremstyle{break}{9pt}{9pt}{\itshape}{}{\bfseries}{}{\newline}{}
\theoremstyle{break}
\newtheorem{exo}{Exercise}[section]
\newtheorem{hyp}[exo]{Axiom}
\newtheorem{res}[exo]{Result}
\newtheorem{defn}[exo]{Definition}
\makeatletter
\def\ll@exo{%
\protect\numberline{\csname the\thmt@envname\endcsname}%
\ifx\@empty\thmt@shortoptarg
\thmt@thmname
\else
\thmt@shortoptarg
\fi}
\def\l@thmt@exo{}
\makeatother
\usepackage[colorlinks=true,linktoc=all,linkcolor=black,citecolor=red,urlcolor=blue]{hyperref}
\title{\bfseries Minimal lectures on two-dimensional \\ conformal field theory}
\author{Sylvain Ribault \vspace{2mm}
\\
{\normalsize CEA Saclay, Institut de Physique Th\'eorique}
\\
{\footnotesize \ttfamily sylvain.ribault@ipht.fr }
}
\begin{document}
\maketitle
\begin{abstract}
We provide a brief but self-contained review of two-dimensional conformal field theory, from the basic principles to some of the simplest models. From the representations of the Virasoro algebra on the one hand, and the state-field correspondence on the other hand, we deduce Ward identities and Belavin--Polyakov--Zamolodchikov equations for correlation functions. We then explain the principles of the conformal bootstrap method, and introduce conformal blocks. This allows us to define and solve minimal models and Liouville theory. In particular, we study their
three- and four-point functions, and discuss their existence and uniqueness. In appendices, we introduce the free boson theory (with an arbitrary central charge), and the modular bootstrap in minimal models.
\end{abstract}
\vspace{5mm}
\textit{Based on lectures given at the school on ``Quantum integrable systems, conformal field theories and stochastic processes'' (Carg\`ese, September 2016), and at the ``Young Researchers Integrability School'' (Vienna, February 2019).}
\vspace{2mm}
\textit{
An earlier version of this text was published in SciPost Physics Lecture Notes: arXiv's fourth version} \href{https://arxiv.org/abs/1609.09523v4}{\texttt{arXiv:1609.09523v4}}.
% %\begin{tcolorbox}
% Material that may be skipped in the lectures is in green boxes. Exercises are in green boxes when their statements are not part of the lectures' text; this does not make them less interesting as exercises.
% %\end{tcolorbox}
\clearpage
\tableofcontents
\hypersetup{linkcolor=blue}
\numberwithin{equation}{section}
\setcounter{section}{-1}
\section{Introduction}
Two-dimensional CFTs belong to the rare cases of quantum field theories that can be exactly solved, thanks to their infinite-dimensional symmetry algebras. They are interesting for their applications to statistical physics, they are the technical basis of string theory in the worldsheet approach, and they can guide the exploration of higher-dimensional CFTs.
We will introduce the main ideas of two-dimensional CFT in the conformal bootstrap approach, and focus on the simplest nontrivial models that have been solved: minimal models and Liouville theory. Rather than following the history of the subject, we try to derive the results in the simplest possible way.
While not claiming mathematical rigour, we explicitly state the axioms that underlie our derivations.
This is supposed to facilitate generalizations, for example to CFTs based on larger symmetry algebras, or to non-diagonal CFTs \cite{mr17}.
%\begin{tcolorbox}
Our first axioms will specify how the Virasoro symmetry algebra acts on fields, and the existence and properties of the operator product expansion.
Next, we introduce additional axioms that single out either minimal models, or Liouville theory.
We will then check that these theories actually exist, by studying their four-point functions.
It is the success of such checks, more than a priori considerations, that justifies our choice of axioms.
Our main tool for solving CFTs is crossing symmetry of the sphere four-point function. We will however introduce two other tools as side subjects:
\begin{itemize}
\item The free boson (Appendix \ref{sec:fb}) is not needed in our approach, because we do not build CFTs as perturbed free theories, as is done in the Lagrangian approach. However, it is a good preparation to the study of CFTs based on larger symmetry algebras, in particular WZW models.
\item The modular bootstrap (Appendix \ref{sec:mb}) focuses on torus partition functions: less interesting than sphere four-point functions, but also much simpler, so they can be tractable even in complicated models.
\end{itemize}
This text aims to be self-contained, except at the very end when we will refer to \cite{zz90} for the properties of generic conformal blocks.
For a more detailed text in the same spirit, see the review article \cite{rib14}. For a wider and more advanced review, and a guide to the recent literature, see Teschner's text \cite{tes17}.
The Bible of rational conformal field theory is of course the epic textbook \cite{fms97}. And Cardy's lecture notes \cite{car08} provide an introduction to the statistical physics applications of conformal field theory.
\begin{exo}[Update Wikipedia]
~\label{exo:wiki}
How would you rate Wikipedia's coverage of two-dimensional CFT? For a list of some relevant articles, see
\href{https://en.wikipedia.org/wiki/User:Sylvain_Ribault/YRIS2019}{this page}.
Correct and update these articles when needed. Are there other relevant articles? Which articles should be created?
\end{exo}
\subsection*{Acknowledgements}
I am grateful to the organizers of the Carg\`ese school, for challenging me to explain Liouville theory in about four hours. I am grateful to the organizers of the Vienna school, for the opportunity to fit these lectures into a school on various aspects of two-dimensional CFT.
I wish to thank Bertrand Eynard, Riccardo Guida, Yifei He, and Andr\'e Voros for helpful suggestions and comments.
I am grateful to the participants of the Carg\`ese and Vienna schools, for their stimulating participation in the lectures.
I wish to thank the SciPost editor and reviewers for their feedback and \href{https://scipost.org/submission/1609.09523v2/}{suggestions}, which led to many improvements, both perturbative and non-perturbative.
%\end{tcolorbox}
\section{The Virasoro algebra and its representations}
\subsection{Algebra}
By definition, conformal transformations are transformations that preserve angles.
In two dimensions with a complex coordinate $z$, any holomorphic transformation preserves angles.
Infinitesimal conformal transformations are holomorphic functions close to the identity function,
\begin{align}
z \mapsto z + \epsilon z^{n+1}\qquad (n\in\mathbb{Z}\ , \ \epsilon\ll 1) \ .
\end{align}
These transformations act on functions of $z$ via the differential operators
\begin{align}
\ell_n = -z^{n+1}\frac{\partial}{\partial z}\ ,
\end{align}
and these operators generate the Witt algebra, with commutation relations
\begin{align}
[\ell_n,\ell_m ] = (n-m)\ell_{m+n}\ .
\end{align}
%\begin{tcolorbox}
The generators $(\ell_{-1},\ell_0,\ell_1)$ generate a subalgebra called the algebra of infinitesimal global conformal transformations and isomorphic to $s\ell_2$. The corresponding Lie group is the group of global conformal transformations of
the Riemann sphere $\mathbb{C}\cup \{\infty\}$,
\begin{align}
z \mapsto \frac{az+b}{cz+d}\quad , \quad (a,b,c,d\in \mathbb{C},\ ad-bc\neq 0)\ .
\end{align}
%\begin{restatable}[An exercise]{exo}{anexercise}
%~\label{exo:test}
%Some text. With more text. A long test. See what the formatting does.
%\end{restatable}
\begin{exo}[Global conformal group of the sphere]
~\label{exo:sphere}
Show that the global conformal group of the sphere is $PSL_2(\mathbb{C})$, and includes translations, rotations, and dilations.
\end{exo}
%\end{tcolorbox}
In a quantum theory, symmetry transformations act projectively on states.
Projective representations of an algebra are equivalent to representations of a centrally extended algebra.
This is why we always look for central extensions of symmetry algebras.
\begin{defn}[Virasoro algebra]
~\label{def:vir}
The central extension of the Witt algebra is called the Virasoro algebra. It has the generators $(L_n)_{n\in\mathbb{Z}}$ and $\mathbf 1$, and the commutation relations
\begin{align}
[\mathbf 1, L_n] = 0 \quad , \quad [L_n,L_m] = (n-m)L_{n+m} +\frac{c}{12}(n-1)n(n+1)\delta_{n+m,0}\mathbf 1 \ ,
\label{eq:vir}
\end{align}
where the number $c$ is called the central charge. (The notation $c\mathbf 1$ stands for a central generator that always has the same eigenvalue $c$ within a given conformal field theory.)
\end{defn}
%\begin{tcolorbox}
\begin{exo}[Uniqueness of the Virasoro algebra]
~\label{exo:vir}
Show that the Virasoro algebra is the unique central extension of the Witt algebra.
\end{exo}
%\end{tcolorbox}
\subsection{Representations}
The spectrum, i.e. the space of states, must be a representation of the Virasoro algebra. Let us now make assumptions on what type of representation it can be.
\begin{hyp}[Representations that can appear in the spectrum]
~\label{hyp:rep}
The spectrum is a direct sum of irreducible representations. In the spectrum, $L_0$ is diagonalizable, and the real part of its eigenvalues is bounded from below.
\end{hyp}
Why this special role for $L_0$? Because we want to interpret it as the energy operator.
We however do not assume that $L_0$ eigenvalues are real or that the spectrum is a Hilbert space: this would restrict the central charge to be real. The $L_0$ eigenvalue of an $L_0$ eigenvector is called its conformal dimension. The action of $L_n$ shifts conformal dimensions by $-n$:
\begin{align}
L_0|v\rangle = \Delta|v\rangle \quad \Rightarrow\quad L_0 L_n|v\rangle = L_nL_0|v\rangle + [L_0, L_n] |v\rangle = (\Delta-n)L_n|v\rangle \ .
\end{align}
Let us consider an irreducible representation that is allowed by our axiom. In this representation, all $L_0$ eigenvalues differ by integers, and there is an eigenvector $|v\rangle$ whose eigenvalue $\Delta$ is smallest in real part.
If follows that $L_n|v\rangle =0$ for $n>0$, and $|v\rangle $ is called a primary state.
\begin{defn}[Primary and descendant states, level, Verma module]
~\label{def:prim}
A primary state with conformal dimension $\Delta$ is a state $|v\rangle\neq 0$ such that
\begin{align}
L_0 |v\rangle = \Delta |v\rangle \quad , \quad L_{n>0} |v\rangle = 0\ .
\end{align}
The Verma module $\mathcal V_\Delta$ is the representation whose basis is
$
\left\{ \prod_{i=1}^k L_{-n_i} |v\rangle\right\}_{ 0<n_1\leq \dots \leq n_k}
$.
The state $\prod_{i=1}^k L_{-n_i} |v\rangle $ has the conformal dimension $\Delta+N$, where $N=\sum_{i=1}^k n_i\geq 0$ is called the level. A state of level $N\geq 1$ is called a descendant state.
\end{defn}
Let us plot a basis of primary and descendant states up to the level $3$:
\begin{align}
\begin{tikzpicture}[scale = .25, baseline=(current bounding box.center)]
\draw[-latex, very thick] (20, 0) -- (20, -21) node [right] {$N$};
\foreach \x in {0, ..., 3}
{
\draw [dotted] (-20, {-6*\x}) -- (20, {-6*\x}) node [right] {${\x}$};
}
\node[fill = white] at (0, 0) (0) {$|v\rangle$};
\node[fill = white] at (-4,-6) (1) {$L_{-1}|v\rangle$};
\node[fill = white] at (-8, -12) (11) {$L_{-1}^2|v\rangle$};
\node[fill = white] at (-12, -18) (111) {$L_{-1}^3|v\rangle$};
\node[fill = white] at (0,-12) (2) {$L_{-2}|v\rangle$};
\node[fill = white] at (0,-18) (12) {$L_{-1}L_{-2}|v\rangle$};
\node[fill = white] at (8,-18) (3) {$L_{-3}|v\rangle$};
\draw[-latex] (0) -- (1);
\draw[-latex] (1) -- (11);
\draw[-latex] (11) -- (111);
\draw[-latex] (0) -- (2);
\draw[-latex] (0) -- (3);
\draw[-latex] (2) -- (12);
\end{tikzpicture}
\end{align}
We need not include the state $L_{-2}L_{-1}|v\rangle$, due to $L_{-2}L_{-1} = L_{-1}L_{-2} - L_{-3}$.
Are Verma modules reducible representations? i.e. do they have nontrivial subrepresentations? In any subrepresentation of a Verma module, $L_0$ is again diagonalizable and bounded from below, so there must be a primary state $|\chi\rangle$. If the subrepresentation differs from the Verma module, that primary state must differ from $|v\rangle$, and therefore be a descendant of $|v\rangle$.
\subsection{Null vectors and degenerate representations}\label{sec:nv}
\begin{defn}[Null vectors]
~\label{def:nv}
A descendant state that is also primary is called a null vector or singular vector.
\end{defn}
In the Verma module $\mathcal V_\Delta$, let us look for null vectors at the level $N=1$. For $n\geq 1$ we have
\begin{align}
L_n L_{-1}|v\rangle = [L_n, L_{-1}] |v\rangle = (n+1) L_{n-1}|v\rangle =
\left\{\begin{array}{ll} 0 & \quad \text{if } n\geq 2\ , \\ 2\Delta |v\rangle & \quad \text{if } n = 1\ . \end{array}\right.
\end{align}
So $L_{-1}|v\rangle$ is a null vector if and only if $\Delta=0$, and the Verma module $\mathcal V_0$ is reducible.
Let us now look for null vectors at the level $N=2$. Let $|\chi\rangle = (L_{-1}^2 + a L_{-2})|v\rangle$, then $L_{n\geq 3} |\chi \rangle =0$.
\begin{exo}[Level two null vectors]
~\label{exo:level2}
Compute $L_1|\chi\rangle$ and $L_2|\chi\rangle$, and find
\begin{align}
L_1 |\chi\rangle = \left((4\Delta+2) + 3a\right) L_{-1}|v\rangle
\quad , \quad L_2 |\chi\rangle= \left(6\Delta + (4\Delta +\tfrac12 c)a\right) |v\rangle\ .
\end{align}
Requiring that $L_1|\chi\rangle$ and $L_2|\chi\rangle$ vanish, find the coefficient $a$, and show that
\begin{align}
\Delta = \frac{1}{16}\left( 5-c\pm\sqrt{(c-1)(c-25)} \right) \ .
\label{eq:dpm}
\end{align}
\end{exo}
In order to simplify this formula, let us introduce other notations for $c$ and $\Delta$. We define
\begin{align}
\text{the background charge } Q \ , & \quad c = 1+6Q^2\ , \quad \text{up to } Q \mapsto -Q\ ,
\label{eq:cqb}
\\
\text{the coupling constant } b \ , & \quad Q = b+\frac{1}{b} \ , \quad \text{up to } b\mapsto \pm b^{\pm 1}\ ,
\\
\text{the momentum } P\ , &\quad \Delta = \frac{Q^2}{4}-P^2\ , \quad \text{up to reflections } P \mapsto -P\ .
\label{eq:refm}
\end{align}
The condition \eqref{eq:dpm} for the existence of a level two null vector becomes
\begin{align}
P = \frac12\left( b+ b^{-1} + b^{\pm 1}\right)\ .
\end{align}
Let us summarize the momentums of the Verma modules that have null vectors at levels $N=1,2$, and the null vectors themselves:
\begin{align}
\renewcommand{\arraystretch}{1.3}
\begin{array}{|c|c|c|c|}
\hline
N & \langle r,s\rangle & P_{\langle r,s\rangle} & L_{\langle r,s\rangle}
\\
\hline\hline
1 & \langle 1,1\rangle & \frac12\left(b+b^{-1}\right) & L_{-1}
\\
\hline
\multirow{2}{*}{2} &
\langle 2,1\rangle & \frac12\left( 2b+ b^{-1}\right) & L_{-1}^2 + b^2 L_{-2}
\\
\cline{2-4}
& \langle 1,2\rangle & \frac12\left( b+ 2b^{-1} \right) & L_{-1}^2 + b^{-2} L_{-2}
\\
\hline
rs & \langle r,s\rangle & \frac12\left(rb+sb^{-1}\right) & L_{-1}^{rs} + \cdots
\\
\hline
\end{array}
\label{eq:ars}
\end{align}
The generalization to higher levels $N\geq 3$ is that the dimensions of Verma modules with null vectors are labelled by positive integers $r,s$ such that $N=rs$. We write these dimensions $\Delta_{\langle r,s\rangle}$, and the corresponding momentums $P_{\langle r,s\rangle}$. We accept these results for now, see the later Exercise \ref{exo:hdr} for a derivation.
If $\Delta\notin\{\Delta_{\langle r,s\rangle}\}_{r,s\in\mathbb{N}^*}$, then $\mathcal V_\Delta$ is irreducible. If $\Delta = \Delta_{\langle r,s\rangle}$, then $\mathcal V_\Delta$ contains a nontrivial submodule, generated by the null vector and its descendant states. For generic values of the central charge $c$, this submodule is the Verma module $\mathcal V_{\Delta_{\langle r,s\rangle}+rs}$.
\begin{defn}[Degenerate representation]
~\label{def:deg}
The coset of the reducible Verma module $\mathcal V_{\Delta_{\langle r,s\rangle}}$ by its Verma submodule $\mathcal V_{\Delta_{\langle r,s\rangle}+rs}$ is an irreducible module $\mathcal{R}_{\langle r,s\rangle}$, which is called a degenerate representation:
\begin{align}
\mathcal{R}_{\langle r,s\rangle} = \frac{\mathcal V_{\Delta_{\langle r,s\rangle}}}{\mathcal V_{\Delta_{\langle r,s\rangle}+rs}}\ .
\end{align}
In this representation, the null vector vanishes,
\begin{align}
L_{\langle r,s\rangle}|v\rangle = 0\ .
\end{align}
\end{defn}
\section{Fields and correlation functions}\label{sec:cft}
Now that we understand the algebraic structure of conformal symmetry in two dimensions, let us study how the Virasoro algebra acts on objects that live on the Riemann sphere -- the fields of conformal field theory. We will not try to construct the fields, or to specify the space they live in: it is enough to view fields as notations for describing the properties of correlation functions, and to understand equations for fields as valid inside correlation functions.
\subsection{Fields}
\begin{hyp}[State-field correspondence]
~\label{hyp:sfc}
For any state $|w\rangle$ in the spectrum, there is an associated field $V_{|w\rangle}(z)$. The map $|w\rangle \mapsto V_{|w\rangle}(z)$ is linear and injective. We define the action of the Virasoro algebra on such fields as
\begin{align}
L_n V_{|w\rangle}(z) = V_{L_n|w\rangle}(z)\ .
\end{align}
We also sometimes use the notation $L_n^{(z)} V_{|w\rangle}(z)=L_n V_{|w\rangle}(z)$.
\end{hyp}
\begin{defn}[Primary field, descendant field, degenerate field]
~\label{def:pfdf}
Let $|v\rangle$ be the primary state of the Verma module $\mathcal V_\Delta$.
We define the primary field $V_\Delta(z)=V_{|v\rangle}(z)$. This field obeys
\begin{align}
L_0 V_\Delta(z) = \Delta V_\Delta(z) \quad , \quad L_{n> 0} V_\Delta(z) = 0 \ .
\end{align}
Similarly, descendant fields correspond to descendant states. And the degenerate field $V_{\langle r,s\rangle}(z)$ corresponds to the primary state of the degenerate representation $\mathcal{R}_{\langle r,s\rangle}$, and therefore obeys
\begin{align}
L_0 V_{\langle r,s\rangle}(z) = \Delta_{\langle r,s\rangle} V_{\langle r,s\rangle}(z) \quad , \quad L_{n> 0} V_{\langle r,s\rangle}(z) = 0 \quad , \quad L_{\langle r, s\rangle} V_{\langle r,s\rangle}(z) = 0\ .
\end{align}
\end{defn}
\begin{hyp}[Dependence of fields on $z$]
~\label{hyp:geom}
For any field $V(z)$, we have
\begin{align}
\frac{\partial}{\partial z} V(z) = L_{-1} V(z) \ .
\label{pvlv}
\end{align}
\end{hyp}
Using this axiom for both $V(z)$ and $L_n^{(z)}V(z)$, we find how $L_n^{(z)}$ depends on $z$:
\begin{align}
\frac{\partial}{\partial z} L_n^{(z)} = [L_{-1}^{(z)},L_n^{(z)}]= -(n+1)L_{n-1}^{(z)}\ ,\qquad (\forall n\in\mathbb{Z})\ .
\end{align}
These infinitely many equations can be encoded into one functional equation,
\begin{align}
\frac{\partial}{\partial z} \sum_{n\in\mathbb{Z}} \frac{L_n^{(z)}}{(y-z)^{n+2}} = 0\ .
\end{align}
\begin{defn}[Energy-momentum tensor]
~\label{def:em}
The energy-momentum tensor is a field, that we define by the formal Laurent series
\begin{align}
T(y) = \sum_{n\in\mathbb{Z}} \frac{L_n^{(z)}}{(y-z)^{n+2}} \ .
\end{align}
In other words, for any field $V(z)$, we have
\begin{align}
T(y)V(z) = \sum_{n\in\mathbb{Z}} \frac{L_n V(z)}{(y-z)^{n+2}}\quad , \quad L_n V(z) = \frac{1}{2\pi i} \oint_{z}dy\ (y-z)^{n+1} T(y)V(z)\ .
\label{eq:lvtv}
\end{align}
\end{defn}
In the case of a primary field $V_\Delta(z)$, using eq. \eqref{pvlv} and writing regular terms as $O(1)$, this definition reduces to
\begin{align}
T(y)V_\Delta(z) \underset{y\to z}{=} \frac{\Delta}{(y-z)^2} V_\Delta(z) + \frac{1}{y-z} \frac{\partial}{\partial z} V_\Delta(z) + O(1)\ .
\label{eq:tvd}
\end{align}
This is our first example of an operator product expansion.
The energy-momentum tensor $T(y)$ is locally holomorphic as a function of $y$, and acquires poles in the presence of other fields. Since we are on the Riemann sphere, it must also be holomorphic at $y=\infty$.
\begin{hyp}[Behaviour of $T(y)$ at infinity]
~\label{hyp:ti}
\begin{align}
T(y) \underset{y\to\infty} = O\left(\frac{1}{y^4}\right)\ .
\label{eq:tinf}
\end{align}
\end{hyp}
\subsection{Correlation functions and Ward identities}
\begin{defn}[Correlation function]
~\label{def:cor}
To $N$ fields $V_1(z_1), \dots ,V_N(z_N)$ with $i\neq j\implies z_i\neq z_j$, we associate a number called their correlation function or $N$-point function, and denoted as
\begin{align}
\Big< V_1(z_1) \cdots V_N(z_N) \Big>\ .
\end{align}
For example, $\left< \prod_{i=1}^N V_{\Delta_i}(z_i) \right>$ is a function of $\{z_i\}, \{\Delta_i\}$ and $c$.
Correlation functions depend linearly on fields, and in particular $\frac{\partial}{\partial z_1} \left< V_1(z_1) \cdots V_N(z_N) \right> = \left< \frac{\partial}{\partial z_1}V_1(z_1) \cdots V_N(z_N) \right>$.
\end{defn}
\begin{hyp}[Commutativity of fields]
~\label{hyp:ass}
Correlation functions do not depend on the order of the fields,
\begin{align}
V_1(z_1) V_2(z_2) = V_2(z_2)V_1(z_1)\ .
\end{align}
\end{hyp}
\begin{exo}[Virasoro algebra and OPE]
~\label{exott}
Show that the commutation relations \eqref{eq:vir} of the Virasoro algebra are equivalent to the following OPE of the field $T(y)$ with itself,
\begin{align}
T(y)T(z) \underset{y\to z}{=} \frac{\frac{c}{2}}{(y-z)^4} + \frac{2T(z)}{(y-z)^2} + \frac{\partial T(z)}{y-z} + O(1)\ .
\label{tt}
\end{align}
\end{exo}
Let us work out the consequences of conformal symmetry for correlation functions.
In order to study an $N$-point function $Z$ of primary fields, we introduce an auxiliary $(N+1)$-point function $Z(y)$ where we insert the energy-momentum tensor,
\begin{align}
Z = \left< \prod_{i=1}^N V_{\Delta_i}(z_i) \right> \quad , \quad Z(y) = \left< T(y) \prod_{i=1}^N V_{\Delta_i}(z_i) \right> \ .
\end{align}
$Z(y)$ is a meromorphic function of $y$, with poles at $y=z_i$, whose residues are given by eq. \eqref{eq:tvd} (using the commutativity of fields).
Moreover $T(y)$, and therefore also $Z(y)$, vanish in the limit $y\to \infty$. So $Z(y)$ is completely determined by its poles and residues,
\begin{align}
Z(y) = \sum_{i=1}^N \left(\frac{\Delta_i}{(y-z_i)^2} +\frac{1}{y-z_i}\frac{\partial}{\partial z_i}\right) Z\ .
\label{eq:zy}
\end{align}
But $T(y)$ does not just vanish for $y\to \infty$, it behaves as $O(\frac{1}{y^4})$.
So the coefficients of $y^{-1}, y^{-2}, y^{-3}$ in the large $y$ expansion of $Z(y)$ must vanish,
\begin{align}
\sum_{i=1}^N \partial_{z_i} Z = \sum_{i=1}^N \left(z_i \partial_{z_i} + \Delta_i\right) Z = \sum_{i=1}^N \left(z_i^2 \partial_{z_i} + 2\Delta_iz_i\right) Z = 0\ .
\label{eq:gward}
\end{align}
These three equations are called global Ward identities.
%\begin{tcolorbox}
The global Ward identities determine how $Z$ behaves under global conformal transformations of the Riemann sphere,
\begin{align}
\left< \prod_{i=1}^N V_{\Delta_i}\left(\frac{az_i+b}{cz_i+d}\right) \right>
= \prod_{i=1}^N (cz_i +d)^{2\Delta_i} \left< \prod_{i=1}^N V_{\Delta_i}(z_i) \right>\ .
\label{eq:zgc}
\end{align}
%\end{tcolorbox}
Let us solve the global Ward identities in the cases of one, two, three and four-point functions. For a one-point function, we have
\begin{align}
\partial_z \Big< V_\Delta(z)\Big> = \Delta \Big< V_\Delta(z)\Big> = 0\quad \text{so that} \quad \Big< V_\Delta(z)\Big> \neq 0 \implies V_\Delta \propto V_{\langle 1,1\rangle}\ .
\end{align}
Similarly, in the case of two-point functions, we find
\begin{align}
\Big< V_{\Delta_1}(z_1)V_{\Delta_2}(z_2) \Big> \propto \delta_{\Delta_1,\Delta_2} (z_1-z_2)^{-2\Delta_1} \ .
\label{eq:2pt}
\end{align}
So a two-point function can be non-vanishing only if the two fields have the same dimension.
For three-point functions, there are as many equations \eqref{eq:gward} as unknowns $z_1,z_2,z_3$, and therefore a unique solution with no constraints on $\Delta_i$,
\begin{align}
\left< \prod_{i=1}^3 V_{\Delta_i}(z_i) \right> \propto (z_1-z_2)^{\Delta_3-\Delta_1-\Delta_2} (z_1-z_3)^{\Delta_2-\Delta_1-\Delta_3} (z_2-z_3)^{\Delta_1-\Delta_2-\Delta_3}\ ,
\label{eq:3pt}
\end{align}
with an unknown proportionality coefficient that does not depend on $z_i$.
For four-point functions, the general solution can be written as
\begin{align}
\left< \prod_{i=1}^4 V_{\Delta_i}(z_i) \right>
= z_{13}^{-2\Delta_1} z_{23}^{\Delta_1-\Delta_2-\Delta_3+\Delta_4} z_{24}^{-\Delta_1-\Delta_2+\Delta_3-\Delta_4} z_{34}^{\Delta_1+\Delta_2-\Delta_3-\Delta_4} G\left(\frac{z_{12}z_{34}}{z_{13}z_{24}}\right)\ ,
\label{eq:4pt}
\end{align}
where $z_{ij} = z_i - z_j$ and $G(z)$ is an arbitrary function of the cross-ratio $z$.
So the three global Ward identities effectively reduce the four-point function to a function of one variable $G$ -- equivalently, we can set $z_2,z_3,z_4$ to fixed values, and recover the four-point function from its dependence on $z_1$ alone.
\begin{exo}[Global conformal symmetry]
~\label{exo:4pt}
Solve the global Ward identities for two-, three- and four-point functions, and recover eqs. \eqref{eq:2pt}, \eqref{eq:3pt} and \eqref{eq:4pt} respectively.
Defining $V_\Delta(\infty) = \lim_{z\to\infty} z^{2\Delta}V_\Delta(z) $, show that this is finite when inserted into a two- or three-point function. More generally, show that this is finite using the behaviour \eqref{eq:zgc} of correlation functions under $z\to -\frac{1}{z}$.
Show that
\begin{align}
G(z) = \Big< V_{\Delta_1}(z) V_{\Delta_2}(0)V_{\Delta_3}(\infty)V_{\Delta_4}(1) \Big>\ .
\end{align}
\end{exo}
We have been studying global conformal invariance of correlation functions of primary fields, rather than more general fields. This was not only for making things simpler, but also because correlation functions of descendants can be deduced from correlation functions of primaries. For example,
\begin{align}
\Big< L_{-2}V_{\Delta_1}(z_1) V_{\Delta_2}(z_2)\cdots \Big>
&= \frac{1}{2\pi i}\oint_{z_1} \frac{dy}{y-z_1} Z(y)
= -\frac{1}{2\pi i} \sum_{i=2}^N \oint_{z_i} \frac{dy}{y-z_1} Z(y)\ ,
\\
& =\sum_{i=2}^N\left(\frac{1}{z_1-z_i}\frac{\partial}{\partial z_i} +\frac{\Delta_i}{(z_i-z_1)^2}\right) Z\ ,
\label{eq:ltv}
\end{align}
where we used first eq. \eqref{eq:lvtv} for $L_{-2}V_{\Delta_1}(z_1)$, and then eq. \eqref{eq:zy} for $Z(y)$.
This can be generalized to any correlation function of descendant fields. The resulting equations are called local Ward identities.
\subsection{Belavin--Polyakov--Zamolodchikov equations}
Local and global Ward identities are all we can deduce from conformal symmetry. But correlation functions that involve degenerate fields obey additional equations.
For example, let us replace $V_{\Delta_1}(z_1)$ with the degenerate primary field $V_{\langle 1, 1 \rangle}(z_1)$
in our $N$-point function $Z$. Since $\frac{\partial}{\partial z_1} V_{\langle 1, 1 \rangle}(z_1) = L_{-1} V_{\langle 1, 1 \rangle}(z_1) =0$,
we obtain $\frac{\partial}{\partial z_1} Z =0$.
In the case $N=3$, having $\Delta_1=\Delta_{\langle 1,1\rangle}=0$ in the three-point function \eqref{eq:3pt} leads to
\begin{align}
\left< V_{\langle 1, 1 \rangle}(z_1) V_{\Delta_2}(z_2) V_{\Delta_3}(z_3) \right> \propto (z_1-z_2)^{\Delta_3-\Delta_2} (z_1-z_3)^{\Delta_2-\Delta_3} (z_2-z_3)^{-\Delta_2-\Delta_3}\ ,
\end{align}
and further imposing $z_1$-independence leads to
\begin{align}
\left< V_{\langle 1, 1 \rangle}(z_1) V_{\Delta_2}(z_2) V_{\Delta_3}(z_3) \right> \neq 0 \quad \implies \quad \Delta_2=\Delta_3\ .
\label{eq:vvvnz}
\end{align}
This coincides with the condition \eqref{eq:2pt} that the two-point function $\left<V_{\Delta_2}(z_2)V_{\Delta_3}(z_3)\right>$ does not vanish. Actually, the field $V_{\langle 1,1\rangle}$ is an identity field, i.e. a field whose presence does not affect correlation functions. (See Exercise \ref{exo:id}.)
In the case of $V_{\langle 2, 1 \rangle}(z_1)$, we have
\begin{align}
\left(L_{-1}^2 + b^2 L_{-2}\right) V_{\langle 2, 1 \rangle}(z_1) = 0\qquad \text{so that} \qquad L_{-2}V_{\langle 2, 1 \rangle}(z_1) = -\frac{1}{b^2}\frac{\partial^2}{\partial z_1^2} V_{\langle 2, 1 \rangle}(z_1)\ .
\end{align}
Using the local Ward identity \eqref{eq:ltv},
this leads to the second-order Belavin--Polyakov--Zamolodchikov partial differential equation
\begin{align}
\left( \frac{1}{b^2}\frac{\partial^2}{\partial z_1^2} + \sum_{i=2}^N\left(\frac{1}{z_1-z_i}\frac{\partial}{\partial z_i} +\frac{\Delta_i}{(z_1-z_i)^2}\right) \right)\left< V_{\langle 2, 1 \rangle}(z_1) \prod_{i=2}^N V_{\Delta_i}(z_i) \right> = 0\ .
\label{eq:bpz}
\end{align}
More generally, a correlation function with the degenerate field $V_{\langle r,s\rangle}$ obeys a partial differential equation of order $rs$.
%\begin{tcolorbox}
\begin{exo}[Second-order BPZ equation for a three-point function]
~\label{exo:bpz3pt}
Show that
\begin{align}
\left< V_{\langle 2, 1 \rangle} V_{\Delta_2} V_{\Delta_3} \right> \neq 0 \quad \implies \quad
P_2 = P_3 \pm \frac{b}{2}\ .
\label{eq:alpm}
\end{align}
\end{exo}
%\end{tcolorbox}
In the case of a four-point function, the BPZ equation amounts to a differential equation for the function of one variable $G(z)$.
\begin{exo}[BPZ second-order differential equation]
~\label{exo:bpz}
Show that the second-order BPZ equation for $G(z)=\Big< V_{\langle 2, 1 \rangle}(z) V_{\Delta_1}(0)V_{\Delta_2}(\infty)V_{\Delta_3}(1) \Big>$ is
\begin{align}
\left\{ \frac{z(1-z)}{b^2}\frac{\partial^2}{\partial z^2} + (2z-1){\frac{\partial}{\partial z}} +\Delta_{\langle 2,1 \rangle} +\frac{\Delta_1}{z}-\Delta_2 + \frac{\Delta_3}{1-z}\right\} G(z)=0\ ,
\label{eq:ode}
\end{align}
\end{exo}
\section{Conformal bootstrap}
We have seen how conformal symmetry leads to linear equations for correlation functions: Ward identities and BPZ equations.
In order to fully determine correlation functions, we need additional, nonlinear equations, and therefore additional axioms: single-valuedness of correlation functions, and existence of operator product expansions.
Using these axioms for studying conformal field theories is called the conformal bootstrap method.
\subsection{Single-valuedness}\label{sec:sv}
\begin{hyp}[Single-valuedness]
~\label{hyp:sv}
Correlation functions are single-valued functions of the positions, i.e. they have trivial monodromies.
\end{hyp}
Our two-point function \eqref{eq:2pt} however has nontrivial monodromy unless $\Delta_1\in \frac12\mathbb{Z}$, as a result of solving holomorphic Ward identities.
We would rather have a single-valued function of the type $|z_1-z_2|^{-4\Delta_1} = (z_1-z_2)^{-2\Delta_1} (\bar z_1-\bar z_2)^{-2\Delta_1}$.
This suggests that we need antiholomorphic Ward identities as well, and therefore a second copy of the Virasoro algebra.
\begin{hyp}[Left and right Virasoro algebras]
~\label{hyp:lr}
We have two mutually commuting Virasoro symmetry algebras with the same central charge, called left-moving or holomorphic, and right-moving or antiholomorphic. Their generators are written $L_n,\bar L_n$, with in particular
\begin{align}
\frac{\partial}{\partial z} V(z) = L_{-1}V(z) \quad , \quad \frac{\partial}{\partial \bar z} V(z)= \bar L_{-1} V(z) \ .
\end{align}
\end{hyp}
Let us consider left- and right-primary fields $V_{\Delta_i,\bar\Delta_i}(z_i)$, with the
two-point functions
\begin{align}
\left<\prod_{i=1}^2 V_{\Delta_i,\bar\Delta_i}(z_i) \right> \propto \delta_{\Delta_1,\Delta_2}\delta_{\bar\Delta_1,\bar\Delta_2} (z_1-z_2)^{-2\Delta_1} (\bar z_1-\bar z_2)^{-2\bar\Delta_1}\ .
\end{align}
This is single-valued if and only if our two fields have half-integer spins,
\begin{align}
\Delta -\bar \Delta \in \frac12\mathbb{Z}\ .
\end{align}
The simplest case is $\Delta=\bar\Delta$, which leads to the definition
\begin{defn}[Diagonal states, diagonal fields and diagonal spectrums]
~\label{def:diag}
A primary state or field is called diagonal if it has the same left and right conformal dimensions. A spectrum is called diagonal if all primary states are diagonal.
\end{defn}
For diagonal primary fields, we will now write $V_\Delta(z) = V_{\Delta,\Delta}(z)$.
\subsection{Operator product expansion and crossing symmetry}
\begin{hyp}[Operator product expansion]
~\label{hyp:ope}
Let $(|w_i\rangle)$ be a basis of the spectrum.
There exist coefficients $C^i_{12}(z_1,z_2)$ such that we have the operator product expansion (OPE)
\begin{align}
V_{|w_1\rangle}(z_1)V_{|w_2\rangle}(z_2) \underset{z_1\to z_2}{=} \sum_i C^i_{12}(z_1,z_2) V_{|w_i\rangle}(z_2)\ .
\end{align}
In a correlation function,
this sum converges for $z_1$ sufficiently close to $z_2$.
\end{hyp}
OPEs allow us to reduce $N$-point functions to $(N-1)$-point functions, at the price of introducing OPE coefficients.
Iterating, we can reduce any correlation function to a combination of OPE coefficients, and two-point functions. (We stop at two-point functions because they are simple enough for being considered as known quantities.)
If
the spectrum is made of diagonal primary states and their descendant states, the OPE of two primary fields is
\begin{align}
V_{\Delta_1}(z_1) V_{\Delta_2}(z_2)
\underset{z_1\to z_2}{=} \sum_{\Delta\in S} C_{\Delta_1,\Delta_2,\Delta} |z_1-z_2|^{2(\Delta-\Delta_1-\Delta_2)}
\Big(V_{\Delta}(z_2) + O(z_1-z_2) \Big)\ ,
\label{eq:ope}
\end{align}
where the subleading terms are contributions of descendant fields.
In particular, the $z_1,z_2$-dependence of the coefficients is dictated by the behaviour
of correlation functions under translations $z_i\to z_i+c$ and dilations $z_i\to\lambda z_i$, leaving a $z_i$-independent unknown factor $C_{\Delta_1,\Delta_2,\Delta}$.
Then, as in correlation functions, contributions of descendants are deduced from contributions of primaries via local Ward identitites.
\begin{exo}[Computing the OPE of primary fields]
~\label{exo:ope}
Compute the first subleading term in the OPE \eqref{eq:ope}, and find
\begin{align}
O(z_1-z_2) = \frac{\Delta+\Delta_1-\Delta_2}{2\Delta} \Big( (z_1-z_2)L_{-1}+(\bar z_1-\bar z_2)\bar L_{-1}\Big) V_{\Delta}(z_2) + O((z_1-z_2)^2)\ .
\end{align}
Hints: Insert $\oint_C dz(z-z_2)^2 T(z)$ on both sides of the OPE, for a contour $C$ that encloses both $z_1$ and $z_2$. Compute the relevant contour integrals with the help of eq. \eqref{eq:tvd}.
\end{exo}
%\begin{tcolorbox}
\begin{exo}[$V_{\langle 1,1\rangle}$ is an identity field]
~\label{exo:id}
Using $\frac{\partial}{\partial z_1} V_{\langle 1,1\rangle}(z_1)=0$, show that the OPE of $V_{\langle 1,1\rangle}$ with another primary field is of the form
\begin{align}
V_{\langle 1,1\rangle}(z_1)V_\Delta(z_2) = C_\Delta V_\Delta(z_2)\ ,
\end{align}
where the subleading terms vanish. Inserting this OPE in a correlation function, show that the constant $C_\Delta$ actually does not depend on $\Delta$. Deduce that, up to a factor $C=C_\Delta$, the field $V_{\langle 1,1\rangle}$ is an identity field.
\end{exo}
%\end{tcolorbox}
Using the OPE, we can reduce a three-point function to a combination of two-point functions, and we find
\begin{align}
\left<\prod_{i=1}^3 V_{\Delta_i}(z_i) \right> = C_{\Delta_1,\Delta_2,\Delta_3} |z_1-z_2|^{2(\Delta_3-\Delta_1-\Delta_2)} |z_1-z_3|^{2(\Delta_2-\Delta_1-\Delta_3)} |z_2-z_3|^{2(\Delta_1-\Delta_2-\Delta_3)}\ ,
\end{align}
assuming the two-point function is normalized as $\left< V_{\Delta}(z_1)V_{\Delta}(z_2) \right> = |z_1-z_2|^{-4\Delta}$.
It follows that $C_{\Delta_1,\Delta_2,\Delta_3}$ coincides with the undertermined constant prefactor of the three-point function. This factor is called the three-point structure constant.
Let us now insert the OPE in a four-point function of primary fields:
\begin{align}
\Big<V_{\Delta_1}(z)V_{\Delta_2}(0)V_{\Delta_3}(\infty)V_{\Delta_4}(1)\Big>
&\underset{z\to 0}{=} \sum_{\Delta\in S} C_{\Delta_1,\Delta_2,\Delta} |z|^{2(\Delta-\Delta_1-\Delta_2)}
\nonumber
\\ & \qquad \qquad \times
\left(\Big< V_\Delta(0)V_{\Delta_3}(\infty)V_{\Delta_4}(1)\Big> + O(z)\right) \ ,
\\
&\underset{z\to 0}{=} \sum_{\Delta\in S} C_{\Delta_1,\Delta_2,\Delta} C_{\Delta,\Delta_3,\Delta_4}
|z|^{2(\Delta-\Delta_1-\Delta_2)} \Big(1 +O(z) \Big)\ .
\end{align}
The contributions of descendants factorize into those of left-moving descendants, generated by the operators $L_{n<0}$, and right-moving descendants, generated by $\bar L_{n<0}$. So the last factor has a holomorphic factorization such that
\begin{align}
\Big<V_{\Delta_1}(z)V_{\Delta_2}(0)V_{\Delta_3}(\infty)V_{\Delta_4}(1)\Big>
=\sum_{\Delta\in S} C_{\Delta_1,\Delta_2,\Delta} C_{\Delta,\Delta_3,\Delta_4} \mathcal{F}^{(s)}_\Delta(z) \mathcal{F}^{(s)}_\Delta(\bar z)\ .
\label{sdec}
\end{align}
\begin{defn}[Conformal block]
~\label{def:block}
The four-point conformal block on the sphere,
\begin{align}
\mathcal{F}^{(s)}_\Delta(z) \underset{z\to 0}{=} z^{\Delta-\Delta_1-\Delta_2}\Big( 1 + O(z) \Big)\ ,
\label{eq:gsd}
\end{align}
is the normalized contribution of the Verma module $\mathcal V_\Delta$ to a four-point function, obtained by summing over left-moving descendants. It is a locally holomorphic function of $z$. Its dependence on $c,\Delta_1,\Delta_2,\Delta_3,\Delta_4$ are kept implicit. The label $(s)$ stands for $s$-channel.
\end{defn}
Conformal blocks are in principle known, as they are universal functions, entirely determined by conformal symmetry.
This is analogous to characters of representations, also known as zero-point conformal blocks on the torus.
\begin{exo}[Computing conformal blocks]
~\label{exo:block}
Compute the conformal block $ \mathcal{F}^{(s)}_\Delta(z)$ up to the order $O(z)$, and find
\begin{align}
\mathcal{F}^{(s)}_\Delta(z) \underset{z\to 0}{=} z^{\Delta-\Delta_1-\Delta_2}\left( 1 + \frac{(\Delta+\Delta_1-\Delta_2)(\Delta+\Delta_4-\Delta_3)}{2\Delta}z + O(z^2) \right)\ .
\label{eq:fsl}
\end{align}
Show that the first-order term has a pole when the Verma module $\mathcal{V}_\Delta$ has a null vector at level one.
Compute the residue of this pole. Compare the condition that this residue vanishes with the condition \eqref{eq:vvvnz} that three-point functions involving $V_{\langle 1,1\rangle}$ exist.
\end{exo}
Our axiom \ref{hyp:ass} on the commutativity of fields implies that the OPE is associative, and that we can use the OPE of any two fields in a four-point function. In particular, using the OPE of the first and fourth fields, we obtain
\begin{align}
\Big<V_{\Delta_1}(z)V_{\Delta_2}(0)V_{\Delta_3}(\infty)V_{\Delta_4}(1)\Big>
=\sum_{\Delta\in S} C_{\Delta,\Delta_1,\Delta_4} C_{\Delta_2,\Delta_3,\Delta} \mathcal{F}^{(t)}_\Delta(z) \mathcal{F}^{(t)}_\Delta(\bar z)\ ,
\label{tdec}
\end{align}
where $\mathcal{F}^{(t)}_\Delta(z) \underset{z\to 1}{=} (z-1)^{\Delta-\Delta_1-\Delta_4}\Big(1+O(z-1)\Big)$ is a $t$-channel conformal block.
The equality of our two decompositions \eqref{sdec} and \eqref{tdec} of the four-point function is called crossing symmetry, schematically
\begin{align}
\sum_{\Delta_s\in S} C_{12s} C_{s34}
\begin{tikzpicture}[baseline=(current bounding box.center), very thick, scale = .3]
\draw (-1,2) node [left] {$2$} -- (0,0) -- node [above] {$s$} (4,0) -- (5,2) node [right] {$3$};
\draw (-1,-2) node [left] {$1$} -- (0,0);
\draw (4,0) -- (5,-2) node [right] {$4$};
\end{tikzpicture}
= \sum_{\Delta_t\in S} C_{23t}C_{t41}
\begin{tikzpicture}[baseline=(current bounding box.center), very thick, scale = .3]
\draw (-2,3) node [left] {$2$} -- (0,2) -- node [left] {$t$} (0,-2) -- (-2, -3) node [left] {$1$};
\draw (0,2) -- (2,3) node [right] {$3$};
\draw (0,-2) -- (2, -3) node [right] {$4$};
\end{tikzpicture}
\ .
\label{csd}
\end{align}
The unknowns in this equation are the spectrum $S$ and three-point structure constant $C$.
Any solution such that $C$ is invariant under permutations allows us to consistently compute arbitrary correlation functions on the sphere \cite{ms89b}, not just four-point functions.
\begin{defn}[Conformal field theory]
~\label{def:cft}
A (model of) conformal field theory on the Riemann sphere is a spectrum $S$ and a permutation-invariant three-point structure constant $C$ that obey crossing symmetry.
\end{defn}
\begin{defn}[Defining and solving]
~\label{def:def}
To define a conformal field theory is to give principles that uniquely determine its spectrum $S$ and correlation functions $\left<\prod_{i=1}^N V_{|w_i\rangle}(z_i)\right>$ with $|w_i\rangle\in S$.
To solve a conformal field theory is to actually compute them.
\end{defn}
\subsection{Degenerate fields and the fusion product}\label{sec:dffp}
Crossing symmetry equations are powerful, but typically involve infinite sums, which makes them difficult to solve.
However, if at least one field is degenerate, then the four-point function belongs to the finite-dimensional space of solutions of a BPZ equation, and is therefore a combination of finitely many conformal blocks.
For example,
$G(z)=\Big< V_{\langle 2, 1 \rangle}(z) V_{\Delta_1}(0)V_{\Delta_2}(\infty)V_{\Delta_3}(1) \Big>$ is a combination of only two holomorphic $s$-channel conformal blocks.
These two blocks are a particular basis of solutions of the BPZ equation \eqref{eq:ode}.
They are fully characterized by their asymptotic behaviour near $z=0$ \eqref{eq:gsd}, where the BPZ equation allows only two values of $\Delta$, namely $\Delta\in\{\Delta(P_1-\frac{b}{2}),\Delta(P_1+\frac{b}{2})\}$.
Another basis of solutions of the same BPZ equation is given by two $t$-channel blocks, which are characterized by their power-like behaviour near $z=1$.
\begin{align}
\mathcal{F}^{(s)}_\pm(z) =
\begin{tikzpicture}[baseline=(current bounding box.center), very thick, scale = .35]
\draw (-1,2) node [left] {$P_1$} -- (0,0) -- node [above] {$P_1\pm \frac{b}{2}$} (4,0) -- (5,2) node [right] {$P_2$};
\draw[dashed] (-1,-2) node [left] {$\langle 2,1 \rangle$} -- (0,0);
\draw (4,0) -- (5,-2) node [right] {$P_3$};
\end{tikzpicture}
\qquad , \qquad
\mathcal{F}^{(t)}_\pm(z) =
\begin{tikzpicture}[baseline=(current bounding box.center), very thick, scale = .35]
\draw (-2,3) node [left] {$P_1$} -- (0,2) -- node [left] {$P_3\pm \frac{b}{2}$} (0,-2);
\draw[dashed] (0, -2) -- (-2, -3) node [left] {$\langle 2,1 \rangle$};
\draw (0,2) -- (2,3) node [right] {$P_2$};
\draw (0,-2) -- (2, -3) node [right] {$P_3$};
\end{tikzpicture}
\label{gpic}
\end{align}
These blocks are written in terms of the hypergeometric function,
\begin{multline}
\renewcommand{\arraystretch}{1.3}
\mathcal{F}^{(s)}_\epsilon(z) = z^{b(\frac{Q}{2}-\epsilon P_1)} (1-z)^{b(\frac{Q}{2}+P_3)}
\\
\times F\left(\tfrac12 + b(-\epsilon P_1+P_2+P_3), \tfrac12 + b(-\epsilon P_1-P_2+P_3), 1 - 2b\epsilon P_1, z\right)\ ,
\label{gpm}
\end{multline}
%\begin{tcolorbox}
\begin{multline}
\mathcal{F}^{(t)}_\eta(z) = z^{b(\frac{Q}{2}+P_1)} (1-z)^{b(\frac{Q}{2}-\eta P_3)}
\\
\times F\left(\tfrac12 + b(P_1+P_2-\eta P_3), \tfrac12 + b(P_1-P_2-\eta P_3), 1 - 2b\eta P_3, 1-z\right)\ .
\label{tpm}
\end{multline}
%\end{tcolorbox}
Let us build single-valued four-point functions as linear combinations of such blocks. Single-valuedness near $z=0$ forbids terms such as $\mathcal{F}^{(s)}_{-}(z) \mathcal{F}^{(s)}_{+}(\bar z)$, and we must have
\begin{align}
G(z) = \sum_{\epsilon=\pm} c^{(s)}_{\epsilon} \mathcal{F}^{(s)}_{\epsilon}(z) \mathcal{F}^{(s)}_{\epsilon}(\bar z) = \sum_{\eta=\pm} c^{(t)}_{\eta} \mathcal{F}^{(t)}_{\eta}(z) \mathcal{F}^{(t)}_{\eta}(\bar z)\ .
\label{gz}
\end{align}
The $s$- and $t$-channel blocks are two bases of the same space of solutions of the BPZ equation, and they are linearly related,
\begin{align}
\mathcal{F}^{(s)}_{\epsilon}(z) = \sum_{\eta=\pm} F_{\epsilon\eta} \mathcal{F}^{(t)}_{\eta}(z)\ .
\end{align}
In particular, this implies
\begin{align}
\frac{c_{+}^{(s)}}{c_{-}^{(s)}} = -\frac{F_{-+}F_{--}}{F_{++}F_{+-}} \ .
\label{eq:coc}
\end{align}
We will later express $c_\pm^{(s)}$ in terms of three-point structure constants, and obtain equations for these structure constants.
The presence of only two $s$-channel fields with momentums $P_1\pm \frac{b}{2}$ means that the operator product expansion $V_{\langle 2, 1 \rangle}(z) V_{P_1}(0)$ involves only two primary fields $V_{P_1\pm \frac{b}{2}}(0)$.
\begin{defn}[Fusion product]
~\label{def:fus}
The fusion product is a bilinear product of representations of the Virasoro algebra, that encodes the constraints on OPEs from Virasoro symmetry and null vectors. In particular,
\begin{align}
\mathcal{R}_{\langle 1,1\rangle}\times \mathcal V_P = \mathcal V_P \quad , \quad
\mathcal{R}_{\langle 2,1\rangle}\times \mathcal V_P = \sum_\pm \mathcal V_{P\pm \frac{b}{2}}\quad , \quad
\mathcal{R}_{\langle 1,2\rangle}\times \mathcal V_P = \sum_\pm \mathcal V_{P\pm \frac{1}{2b}}\ .
\label{eq:rv}
\end{align}
From the commutativity of fields, it follows that the fusion product is commutative and associative.
\end{defn}
%\begin{tcolorbox}
The fusion product can be defined algebraically \cite{gab99}: the fusion product of two representations is a coset of their tensor product, where however the Virasoro algebra does not act as it would in the tensor product. (In the tensor product, central charges and conformal dimensions add.)
%\end{tcolorbox}
Using the associativity of the fusion product, we have
\begin{align}
\mathcal{R}_{\langle 2,1\rangle}\times \mathcal{R}_{\langle 2,1\rangle} \times \mathcal V_P =
\mathcal{R}_{\langle 2,1\rangle}\times \left(\sum_\pm \mathcal V_{P\pm \frac{b}{2}}\right) =
\mathcal V_{P - b} + 2\cdot \mathcal V_P + \mathcal V_{P + b} \ .
\end{align}
Since the fusion product of $\mathcal{R}_{\langle 2,1\rangle}\times \mathcal{R}_{\langle 2,1\rangle} $ with $\mathcal V_P$ has finitely many terms, $\mathcal{R}_{\langle 2,1\rangle}\times \mathcal{R}_{\langle 2,1\rangle} $
must be a degenerate representation.
On the other hand, eq. \eqref{eq:rv} implies that $\mathcal{R}_{\langle 2,1\rangle}\times \mathcal{R}_{\langle 2,1\rangle} $ is made of representations with momentums $P_{\langle 2,1\rangle} \pm \frac{b}{2} = P_{\langle 1,1\rangle}, P_{\langle 3,1\rangle}$. Therefore,
\begin{align}
\mathcal{R}_{\langle 2,1\rangle}\times \mathcal{R}_{\langle 2,1\rangle} = \mathcal{R}_{\langle 1,1\rangle} + \mathcal{R}_{\langle 3,1\rangle} \quad , \quad \mathcal{R}_{\langle 3,1\rangle} \times \mathcal V_P = \mathcal V_{P - b} + \mathcal V_P + \mathcal V_{P + b}\ .
\end{align}
It can be checked that $\mathcal{R}_{\langle 3,1\rangle}$ has a vanishing null vector at level $3$, so that our definition of $\mathcal{R}_{\langle 3,1\rangle}$ from fusion agrees with the definition from representation theory in Section \ref{sec:nv}.
\begin{exo}[Higher degenerate representations]
~\label{exo:hdr}
By recursion on $r,s\in \mathbb{N}^*$, show that there exist degenerate representations $\mathcal{R}_{\langle r,s \rangle}$ with momentums $P_{\langle r,s \rangle}$ \eqref{eq:ars},
such that
\begin{align}
\mathcal{R}_{\langle r,s \rangle}\times \mathcal{V}_P &= \mathcal{R}_{\langle r,s \rangle}\times \mathcal{V}_P = \sum_{i=-\frac{r-1}{2}}^{\frac{r-1}{2}} \sum_{j=-\frac{s-1}{2}}^{\frac{s-1}{2}} \mathcal{V}_{P + ib+jb^{-1}}\ ,
\label{rtv}
\\
\mathcal{R}_{\langle r_1,s_1 \rangle} \times \mathcal{R}_{\langle r_2,s_2 \rangle} &= \sum_{r_3\overset{2}{=}|r_1-r_2|+1}^{r_1+r_2-1}\ \sum_{s_3\overset{2}{=}|s_1-s_2|+1}^{s_1+s_2-1} \mathcal{R}_{\langle r_3,s_3 \rangle}\ ,
\label{rrsr}
\end{align}
where the sums run by increments of $2$ if there is a superscript in $\overset{2}{=}$, and $1$ otherwise.
\end{exo}
These fusion products will play a crucial role in minimal models, whose spectrums are made of degenerate representations.
\section{Minimal models}
\begin{defn}[Minimal model]
~\label{def:mm}
A minimal model is a conformal field theory whose spectrum is made of finitely many irreducible representations of the product of the left and the right Virasoro algebras.
\end{defn}
\subsection{Diagonal minimal models}\label{sec:amm}
We first focus on diagonal minimal models, whose spectrums are of the type
\begin{align}
S = \bigoplus_\mathcal{R} \mathcal{R}\otimes \mathcal{\bar R}\ ,
\end{align}
where $\mathcal{R}$ and $ \mathcal{\bar R}$ denote the same Virasoro representation, viewed as a representation of the left- or right-moving Virasoro algebra respectively.
\begin{hyp}[Degenerate spectrum]
~\label{hyp:deg}
All representations that appear in the spectrum of a minimal model are degenerate.
\end{hyp}
It is natural to use degenerate representations, because in an OPE of degenerate fields, only finitely many representations can appear. Conversely, we now assume that all representations that are allowed by fusion do appear in the spectrum, in other words
\begin{hyp}[Closure under fusion]
~\label{hyp:stab}
The spectrum is closed under fusion.
\end{hyp}
Let us assume that the spectrum contains a nontrivial degenerate representation such as $\mathcal{R}_{\langle 2,1\rangle}$. Fusing it with itself, we get $\mathcal{R}_{\langle 1, 1\rangle}$ and $\mathcal{R}_{\langle 3,1\rangle}$. Fusing multiple times, we get $(\mathcal{R}_{\langle r, 1\rangle})_{r\in\mathbb{N}^*}$ due to $\mathcal{R}_{\langle 2,1\rangle} \times \mathcal{R}_{\langle r,1\rangle} = \mathcal{R}_{\langle r-1,1\rangle} + \mathcal{R}_{\langle r+1,1\rangle}$. If the spectrum moreover contains $\mathcal{R}_{\langle 1,2\rangle}$, then it must contain all degenerate representations.
\begin{defn}[Generalized minimal model]
~\label{def:gmm}
For any value of the central charge $c\in\mathbb{C}$, the generalized minimal model is the conformal field theory whose spectrum is
\begin{align}
S^\mathrm{GMM} = \bigoplus_{r=1}^\infty \bigoplus_{s=1}^\infty \mathcal{R}_{\langle r,s \rangle}\otimes \mathcal{\bar R}_{\langle r,s \rangle} \ ,
\end{align}
assuming it exists and is unique.
\end{defn}
So, using only degenerate representations is not sufficient for building minimal models.
In order to have even fewer fields in fusion products, let us consider representations that are multiply degenerate. For example, if $\mathcal{R}_{\langle 2, 1\rangle} = \mathcal{R}_{\langle 1, 3\rangle}$ has two vanishing null vectors, then $\mathcal{R}_{\langle 2, 1\rangle} \times \mathcal{R}_{\langle 2, 1\rangle} = \mathcal{R}_{\langle 1,1\rangle}$ has only one term, as the term $\mathcal{R}_{\langle 3, 1\rangle}$ is not allowed by the fusion rules of $\mathcal{R}_{\langle 1, 3\rangle}$.
In order for a representation to have two null vectors, we however need a coincidence of
the type $\Delta_{\langle r,s \rangle} = \Delta_{\langle r',s' \rangle}$.
This is equivalent to $P_{\langle r,s \rangle} \in \{ P_{\langle r',s' \rangle}, -P_{\langle r',s' \rangle}\}$, and it follows that
$b^2$ is rational,
\begin{align}
b^2 = - \frac{q}{p} \qquad \text{with} \qquad \left\{\begin{array}{l} (p,q)\in \mathbb{N}^*\times \mathbb{Z}^* \\ p, q\text{ coprime} \end{array} \right.
\qquad \text{i.e.} \qquad c = 1-6\frac{(q-p)^2}{pq}\ .
\label{eq:bcmin}
\end{align}
For any integers $r,s$, we then have the coincidence
\begin{align}
\Delta_{\langle r,s \rangle} = \Delta_{\langle p-r, q-s\rangle}\ .
\end{align}
In particular, let the Kac table be the set $(r,s)\in [1, p-1]\times [1,q-1]$, and let us build a diagonal spectrum from the corresponding representations:
\begin{align}
S_{p, q} = \frac12 \bigoplus_{r=1}^{p-1} \bigoplus_{s=1}^{q-1} \mathcal{R}_{\langle r,s \rangle}\otimes \mathcal{\bar{R}}_{\langle r,s \rangle}\ ,
\end{align}
where $\mathcal{R}_{\langle r,s \rangle}=\mathcal{R}_{\langle p-r,q-s \rangle}$ now denotes a degenerate representation with two independent null vectors, and the factor $\frac12$ is here to avoid counting the same representation twice.
This spectrum is not empty provided the coprime integers $p,q$ are both greater than $2$,
\begin{align}
p,q \geq 2 \ ,
\label{eq:pqmin}
\end{align}
which implies in particular $b,Q\in i\mathbb{R}$ and $c<1$.
\begin{exo}[Closure of minimal model spectrums under fusion]
~\label{exo:cmm}
Show that $S_{p,q}$ is closed under fusion, and that the fusion products of the representations that appear in $S_{p,q}$ are
\begin{align}
\mathcal{R}_{\langle r_1,s_1 \rangle} \times \mathcal{R}_{\langle r_2,s_2 \rangle} = \sum_{r_3\overset{2}{=}|r_1-r_2|+1}^{\min(r_1+r_2,2p-r_1-r_2)-1}\ \sum_{s_3\overset{2}{=}|s_1-s_2|+1}^{\min(s_1+s_2,2q-s_1-s_2)-1} \mathcal{R}_{\langle r_3,s_3 \rangle}\ .
\label{rrmm}
\end{align}
Are all finite, nontrivial sets of multiply degenerate representations that close under fusion subsets of some $S_{p,q}$? Do such sets exist only if $p,q\geq 2$?
\end{exo}
\begin{defn}[Diagonal minimal model]
~\label{def:dmm}
For $p,q\geq 2$ coprime integers, the A-series $(p,q)$ minimal model is the conformal field theory whose spectrum is $S_{p, q}$, assuming it exists and is unique.
\end{defn}
For example, the minimal model with the central charge $c=\frac12$ has the spectrum $S_{4,3}$,
\begin{align}
\renewcommand{\arraystretch}{1.3}
\left\{\begin{array}{l} \Delta_{\langle 1,1\rangle}=\Delta_{\langle 3,2\rangle} = 0 \ , \\ \Delta_{\langle 1,2\rangle} =\Delta_{\langle 3,1\rangle} = \frac12 \ , \\ \Delta_{\langle 2,1\rangle} =\Delta_{\langle 2,2\rangle} = \frac{1}{16} \ .\end{array}\right.
\qquad \iff \quad \text{the Kac table} \quad
\begin{array}{c|ccc} 2 & \frac{1}{2} & \frac{1}{16} & 0 \\ 1 & 0 & \frac{1}{16} & \frac{1}{2} \\ \hline & 1 & 2 & 3 \end{array}
\end{align}
\subsection{D-series minimal models}\label{sec:dmm}
Let us look for non-diagonal minimal models. We therefore relax the assumption that fields be diagonal, and allow them to have integer spins. (We could allow half-integer spins, leading to fermionic minimal models \cite{pet88}.) We still assume that the spectrum is made of doubly degenerate representations, and is closed under fusion.
Given a rational value of $b^2=-\frac{q}{p}$, let us look for pairs of doubly degenerate representations whose dimensions differ by integers, using the identity
\begin{align}
\Delta_{\langle p-r,s\rangle} -\Delta_{\langle r,s\rangle}= \left(r-\frac{p}{2}\right)\left(s-\frac{q}{2}\right)\ .
\end{align}
Without loss of generality we assume that $q$ is odd. Then we need $r-\frac{p}{2}$ to be an even integer, therefore $p$ is even and $r\equiv\frac{p}{2}\bmod 2$. Under these assumptions, the representation $\mathcal{R}_{\langle r,s\rangle}\otimes \bar{\mathcal{R}}_{\langle p-r,s\rangle}$ has integer spin. We now look for a spectrum whose non-diagonal sector is made of all representations of this type, for $(r,s)$ in the Kac table.
Fusing two such representations produces degenerate representations with odd values of $r$. If $p\equiv 0\bmod 4$, such representations do not belong to our non-diagonal sector, and must therefore be diagonal. We therefore build a diagonal sector from all indices $(r,s)$ in the Kac table with $r$ odd, not only if $p\equiv 0\bmod 4$, but also for $p\equiv 2\bmod 4$.
\begin{defn}[D-series minimal model]
For $p,q\geq 2$ coprime integers with $p\in 6+2\mathbb{N}$, the D-series $(p,q)$ minimal model is the conformal field theory whose spectrum is
\begin{align}
S_{p,q}^\text{D-series} = \frac12 \bigoplus_{r\overset{2}{=}1}^{p-1} \bigoplus_{s=1}^{q-1} \mathcal{R}_{ \langle r,s \rangle} \otimes \bar{\mathcal{R}}_{\langle r,s \rangle}\oplus \frac12\bigoplus_{\substack{1\leq r\leq p-1 \\ r\equiv \frac{p}{2}\bmod 2}} \bigoplus_{s=1}^{q-1} \mathcal{R}_{\langle r,s \rangle} \otimes \bar{\mathcal{R}}_{\langle p-r,s\rangle}\ ,
\label{eq:sds}
\end{align}
assuming it exists and is unique.
\end{defn}
(We need $p\geq 6$ for our would-be non-diagonal sector to actually contain representations with nonzero spins.)
%\begin{tcolorbox}
\begin{exo}[Fusion rules of D-series minimal models]
~\label{exo:frd}
If $p\equiv 0\bmod 4$, show that the D-series minimal model's fusion rules are completely determined by the fusion rules of the corresponding Virasoro representations. Write these fusion rules, and show that they conserve diagonality, in the sense that any correlation function with an odd number of non-diagonal fields vanishes. Assuming conservation of diagonality still holds if $p\equiv 2\bmod 4$, write the fusion rules of all D-series minimal models.
\end{exo}
%\end{tcolorbox}
\section{Liouville theory}
\subsection{Definition}