-
Notifications
You must be signed in to change notification settings - Fork 25
/
Copy pathfcfit.py
23 lines (21 loc) · 984 Bytes
/
fcfit.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
#flat and cosine annealer - @mgrankin invented
#let's make it fast and easy - @lessw2020
def fcfit(learn, num_epoch=2, lr=4e-3, start_pct=.72, f_show_curve=True):
if num_epoch<1:
raiseValueError("num_epoch must be 1 or higher")
n = len(learn.data.train_dl)
anneal_start = int(n*num_epoch*start_pct) #compute what batch to start
batch_finish = (n*num_epoch - anneal_start)
phase0 = TrainingPhase(anneal_start).schedule_hp('lr', lr)
phase1 = TrainingPhase(n*5 - anneal_start).schedule_hp('lr', lr, anneal=annealing_cos)
phases = [phase0, phase1]
sched = GeneralScheduler(learn, phases)
#save the setup
learn.callbacks.append(sched)
#start the training
print(f"fcfit: num_epochs: {num_epoch}, lr = {lr}")
print(f"Flat for {anneal_start} epochs, then cosine anneal for {batch_finish}")
learn.fit(num_epoch)
#bonus -show lr curve?
if f_show_curve:
learn.recorder.plot_lr()