-
Notifications
You must be signed in to change notification settings - Fork 100
/
infer.py
86 lines (67 loc) · 2.43 KB
/
infer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
import os
from tqdm import tqdm
from PIL import Image
import numpy as np
import warnings
warnings.filterwarnings("ignore", category=FutureWarning)
warnings.filterwarnings("ignore", category=DeprecationWarning)
import torch
import torch.nn.functional as F
import torchvision.transforms as transforms
from data.base_dataset import Normalize_image
from utils.saving_utils import load_checkpoint_mgpu
from networks import U2NET
device = "cuda"
image_dir = "input_images"
result_dir = "output_images"
checkpoint_path = os.path.join("trained_checkpoint", "cloth_segm_u2net_latest.pth")
do_palette = True
def get_palette(num_cls):
"""Returns the color map for visualizing the segmentation mask.
Args:
num_cls: Number of classes
Returns:
The color map
"""
n = num_cls
palette = [0] * (n * 3)
for j in range(0, n):
lab = j
palette[j * 3 + 0] = 0
palette[j * 3 + 1] = 0
palette[j * 3 + 2] = 0
i = 0
while lab:
palette[j * 3 + 0] |= ((lab >> 0) & 1) << (7 - i)
palette[j * 3 + 1] |= ((lab >> 1) & 1) << (7 - i)
palette[j * 3 + 2] |= ((lab >> 2) & 1) << (7 - i)
i += 1
lab >>= 3
return palette
transforms_list = []
transforms_list += [transforms.ToTensor()]
transforms_list += [Normalize_image(0.5, 0.5)]
transform_rgb = transforms.Compose(transforms_list)
net = U2NET(in_ch=3, out_ch=4)
net = load_checkpoint_mgpu(net, checkpoint_path)
net = net.to(device)
net = net.eval()
palette = get_palette(4)
images_list = sorted(os.listdir(image_dir))
pbar = tqdm(total=len(images_list))
for image_name in images_list:
img = Image.open(os.path.join(image_dir, image_name)).convert("RGB")
image_tensor = transform_rgb(img)
image_tensor = torch.unsqueeze(image_tensor, 0)
output_tensor = net(image_tensor.to(device))
output_tensor = F.log_softmax(output_tensor[0], dim=1)
output_tensor = torch.max(output_tensor, dim=1, keepdim=True)[1]
output_tensor = torch.squeeze(output_tensor, dim=0)
output_tensor = torch.squeeze(output_tensor, dim=0)
output_arr = output_tensor.cpu().numpy()
output_img = Image.fromarray(output_arr.astype("uint8"), mode="L")
if do_palette:
output_img.putpalette(palette)
output_img.save(os.path.join(result_dir, image_name[:-3] + "png"))
pbar.update(1)
pbar.close()