Skip to content

Latest commit

 

History

History
92 lines (63 loc) · 1.64 KB

README.md

File metadata and controls

92 lines (63 loc) · 1.64 KB

Deep Reinforcement Learning with Variational Quantum Circuits

Code accompanying the paper:

Uncovering Instabilities in Variational-Quantum Deep Q-Networks. Maja Franz, Lucas Wolf, Maniraman Periyasamy, Christian Ufrecht, Daniel D. Scherer, Axel Plinge, Christopher Mutschler, Wolfgang Mauerer. Journal of The Franklin Institute. Elsevier (Open Access). 2022.

Training

To train an agent run:

python3 train.py path.to.config

e.g.

python3 train.py tfq.reproduction.skolik.cartpole.skolik_hyper.baseline.gs.sc_enc

We provide several configuration files in configs/

A training process can be tracked with TensorBoard:

tensorboard --logdir logs --host 0.0.0.0

Plotting

We provide all scripts and data, which were used to create the graphs in the paper.

Generate all figures:

cd plot/
./plot_all.sh 

Plot a single or multiple conducted experiments:

cd plot/
./plot_runs.sh

Docker

The Dockerimages contain all neccessary libraries and packages to run the training and plotting scripts. We provide one GPU and one CPU-only version.

Build docker image

docker build -f Dockerfile_GPU -t quantum-rl-gpu .

or

docker build -f Dockerfile_CPU -t quantum-rl-cpu .

Create docker container

docker run --name qrl-gpu -it -d --runtime=nvidia -v $PWD:/home/repro -p 6006:6006 quantum-rl-gpu

or

docker run --name qrl-cpu -it -d -v $PWD:/home/repro -p 6006:6006 quantum-rl-cpu

Access container

docker exec -it qrl-cpu /bin/bash

or

docker exec -it qrl-cpu /bin/bash

Restart a stopped container:

docker start qrl-gpu

or

docker start qrl-cpu