forked from uds-psl/base-library
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathRetracts.v
400 lines (318 loc) · 12.3 KB
/
Retracts.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
(** * Library for retracts *)
(* Author: Maximilian Wuttke *)
Require Import PslBase.Base.
(*
* A retraction between types [A] and [B] is a tuple of two functions,
* [f : A -> B] (called the injection function) and [g : B -> option A] (called the retract function),
* such that the following triangle shaped diagram commutes:
*
* f
* A -----> B
* | /
* Some | / g
* | /
* \|/ |/_
* option A
*
* That informally means, that the injective function [f] can be reverted by the retract function [g].
* Foramlly, for all values [x:A] and [y = f x], then [g y = Some x]. (Or: [forall x, g (f x) = Some x].)
*
* The retracts should also be "tight", which means that the retract function only reverts values in
* the image of [f]. Foramlly this means that whenever [g y = Some x], then also [y = f x]
*
* Altogether, we have that [forall x y, g y = Some x <-> y = f x].
*)
Section Retract.
Variable X Y : Type.
Definition retract (f : X -> Y) (g : Y -> option X) := forall x y, g y = Some x <-> y = f x.
Class Retract :=
{
Retr_f : X -> Y;
Retr_g : Y -> option X;
Retr_retr : retract Retr_f Retr_g;
}.
End Retract.
Arguments Retr_f { _ _ _ }.
Arguments Retr_g { _ _ _ }.
Section Retract_Properties.
Variable X Y : Type.
Hypothesis I : Retract X Y.
Definition retract_g_adjoint : forall x, Retr_g (Retr_f x) = Some x.
Proof. intros. pose proof @Retr_retr _ _ I. hnf in H. now rewrite H. Qed.
Definition retract_g_inv : forall x y, Retr_g y = Some x -> y = Retr_f x.
Proof. intros. now apply Retr_retr. Qed.
Lemma retract_g_surjective : forall x, { y | Retr_g y = Some x }.
Proof. intros x. pose proof retract_g_adjoint x. cbn in H. eauto. Defined.
Lemma retract_f_injective : forall x1 x2, Retr_f x1 = Retr_f x2 -> x1 = x2.
Proof.
intros x1 x2 H.
enough (Some x1 = Some x2) by congruence.
erewrite <- !retract_g_adjoint.
now rewrite H.
Qed.
Lemma retract_g_Some x y :
Retr_g (Retr_f x) = Some y ->
x = y.
Proof. now intros H % retract_g_inv % retract_f_injective. Qed.
Lemma retract_g_None b :
Retr_g b = None ->
forall a, Retr_f a <> b.
Proof.
intros H a <-.
enough (Retr_g (Retr_f a) = Some a) by congruence.
apply retract_g_adjoint.
Qed.
End Retract_Properties.
(* This tactic replaces all occurrences of [g (f x)] with [Some x] for retracts. *)
Ltac retract_adjoint :=
match goal with
| [ H : context [ Retr_g (Retr_f _) ] |- _ ] => rewrite retract_g_adjoint in H
| [ |- context [ Retr_g (Retr_f _) ] ] => rewrite retract_g_adjoint
end.
(*
* We can compose retractions, as shown in the following commuting diagram
*
* f1 f2
* A --------> B --------> C
* | / | /
* | / |Some /
* | / | /
* | / | /
* Some | / g1 | / g2
* | / | /
* \|/ |/_ \|/ |/_
* option A <--- option B
* map g1
*
*
* Where [map g1] is the function that takes an option [x : option B] and applys [Some] and [g1] if it is [Some],
* and else returns [None].
*
* Now [f2 ∘ f1] and [map g1 ∘ g2] gives a retract between [A] and [C].
*)
Section ComposeRetracts.
Variable A B C : Type.
Definition retr_comp_f (f1 : B -> C) (f2 : A -> B) : A -> C := fun a => f1 (f2 a).
Definition retr_comp_g (g1 : C -> option B) (g2 : B -> option A) : C -> option A :=
fun c => match g1 c with
| Some b => g2 b
| None => None
end.
(* No instance (outside of this section), for obvious reasons... *)
Local Instance ComposeRetract (retr1 : Retract B C) (retr2 : Retract A B) : Retract A C :=
{|
Retr_f := retr_comp_f Retr_f Retr_f;
Retr_g := retr_comp_g Retr_g Retr_g;
|}.
Proof.
abstract now
unfold retr_comp_f, retr_comp_g; intros a c; split;
[intros H; destruct (Retr_g c) as [ | ] eqn:E;
[ apply retract_g_inv in E as ->; now apply retract_g_inv in H as ->
| congruence
]
| intros ->; now do 2 retract_adjoint
].
Defined.
End ComposeRetracts.
(** We define some useful retracts. *)
Section Usefull_Retracts.
Variable (A B C D : Type).
(** Identity retract *)
Global Instance Retract_id : Retract A A :=
{|
Retr_f a := a;
Retr_g b := Some b;
|}.
Proof. abstract now hnf; firstorder congruence. Defined.
(** Empty retract *)
Global Instance Retract_Empty : Retract Empty_set A :=
{|
Retr_f e := @Empty_set_rect (fun _ => A) e;
Retr_g b := None;
|}.
Proof. abstract now intros x; elim x. Defined.
(** Eliminate the [Empty_set] from the source sum type *)
Global Instance Retract_Empty_left `{retr: Retract A B} : Retract (A + Empty_set) B :=
{|
Retr_f a := match a with
| inl a => Retr_f a
| inr e => @Empty_set_rect (fun _ => B) e
end;
Retr_g b := match Retr_g b with
| Some a => Some (inl a)
| None => None
end;
|}.
Proof.
abstract now intros [ a | [] ] b; split;
[ intros H; destruct (Retr_g b) eqn:E; inv H; now apply retract_g_inv in E
| intros ->; now retract_adjoint
].
Defined.
Global Instance Retract_Empty_right `{retr: Retract A B} : Retract (Empty_set + A) B :=
{|
Retr_f a := match a with
| inl e => @Empty_set_rect (fun _ => B) e
| inr a => Retr_f a
end;
Retr_g b := match Retr_g b with
| Some a => Some (inr a)
| None => None
end;
|}.
Proof.
abstract now intros [ [] | a ] b; split;
[ intros H; destruct (Retr_g b) eqn:E; inv H; now apply retract_g_inv in E
| intros ->; now retract_adjoint
].
Defined.
(** We can introduce an additional [Some] and use the identity as the retract function *)
Global Instance Retract_option `{retr: Retract A B} : Retract A (option B) :=
{|
Retr_f a := Some (Retr_f a);
Retr_g ob := match ob with
| Some b => Retr_g b
| None => None
end;
|}.
Proof.
abstract now
split;
[ intros H; destruct y as [b|];
[ now apply retract_g_inv in H as ->
| inv H
]
| intros ->; now retract_adjoint
].
Defined.
(** We can introduce an additional [inl] *)
Definition retract_inl_f (f : A -> B) : A -> (B + C) := fun a => inl (f a).
Definition retract_inl_g (g : B -> option A) : B+C -> option A :=
fun x => match x with
| inl b => g b
| inr c => None
end.
Global Instance Retract_inl (retrAB : Retract A B) : Retract A (B + C) :=
{|
Retr_f := retract_inl_f Retr_f;
Retr_g := retract_inl_g Retr_g;
|}.
Proof.
abstract now
unfold retract_inl_f, retract_inl_g; hnf; intros x y; split;
[ destruct y as [a|b]; [ now intros -> % retract_g_inv | congruence ]
| intros ->; now retract_adjoint
].
Defined.
(** The same for [inr] *)
Definition retract_inr_f (f : A -> B) : A -> (C + B) := fun a => inr (f a).
Definition retract_inr_g (g : B -> option A) : C+B -> option A :=
fun x => match x with
| inr b => g b
| inl c => None
end.
Global Instance Retract_inr (retrAB : Retract A B) : Retract A (C + B) :=
{|
Retr_f := retract_inr_f Retr_f;
Retr_g := retract_inr_g Retr_g;
|}.
Proof.
abstract now
unfold retract_inr_f, retract_inr_g; hnf; intros x y; split;
[ destruct y as [a|b]; [ congruence | now intros -> % retract_g_inv ]
| intros ->; now retract_adjoint
].
Defined.
(** We can map retracts over sums, similiary as we have done with inversions *)
Section Retract_sum.
Definition retract_sum_f (f1: A -> C) (f2: B -> D) : A+B -> C+D :=
fun x => match x with
| inl a => inl (f1 a)
| inr b => inr (f2 b)
end.
Definition retract_sum_g (g1: C -> option A) (g2: D -> option B) : C+D -> option (A+B) :=
fun y => match y with
| inl c => match g1 c with
| Some a => Some (inl a)
| None => None
end
| inr d => match g2 d with
| Some b => Some (inr b)
| None => None
end
end.
Local Instance Retract_sum (retr1 : Retract A C) (retr2 : Retract B D) : Retract (A+B) (C+D) :=
{|
Retr_f := retract_sum_f Retr_f Retr_f;
Retr_g := retract_sum_g Retr_g Retr_g;
|}.
Proof.
abstract now
unfold retract_sum_f, retract_sum_g; intros x y; split;
[ intros H; destruct y as [c|d];
[ destruct (Retr_g c) eqn:E1; inv H; f_equal; now apply retract_g_inv
| destruct (Retr_g d) eqn:E1; inv H; f_equal; now apply retract_g_inv
]
| intros ->; destruct x as [a|b]; now retract_adjoint
].
Defined.
End Retract_sum.
End Usefull_Retracts.
(* If we have a retract from [A] to [Z] and a retract from [B] to Z, in general it is not possible
* to build a retract from [A+B] to [Z]. For example, there can be no retract from [unit+unit] to
* [unit]. However, it is possible when the images of the injections are distint.
*)
Section Join.
Variable A B Z : Type.
Variable retr1 : Retract A Z.
Variable retr2 : Retract B Z.
Local Arguments Retr_f {_ _} (Retract).
Local Arguments Retr_g {_ _} (Retract).
Definition retract_join_f s :=
match s with
| inl a => Retr_f retr1 a
| inr b => Retr_f retr2 b
end.
Definition retract_join_g z :=
match Retr_g retr1 z with
| Some a => Some (inl a)
| None =>
match Retr_g retr2 z with
| Some b => Some (inr b)
| None => None
end
end.
Hypothesis disjoint : forall (a : A) (b : B), Retr_f _ a <> Retr_f _ b.
Lemma retract_join : retract retract_join_f retract_join_g.
Proof.
unfold retract_join_f, retract_join_g. hnf; intros s z; split.
- destruct s as [a|b]; intros H.
+ destruct (Retr_g retr1 z) eqn:E.
* inv H. now apply retract_g_inv in E.
* destruct (Retr_g retr2 z) eqn:E2; inv H.
+ destruct (Retr_g retr1 z) eqn:E.
* inv H.
* destruct (Retr_g retr2 z) eqn:E2.
-- inv H. now apply retract_g_inv in E2.
-- inv H.
- intros ->. destruct s as [a|b]; retract_adjoint. reflexivity.
destruct (Retr_g retr1 (Retr_f retr2 b)) eqn:E.
+ exfalso. apply retract_g_inv in E. symmetry in E. now apply disjoint in E.
+ reflexivity.
Qed.
Local Instance Retract_join : Retract (A+B) Z := Build_Retract retract_join.
End Join.
(** More instances like [Retract_sum] for bigger sums. *)
Section MoreSums.
Local Instance Retract_sum3 (A A' B B' C C' : Type) (retr1 : Retract A A') (retr2 : Retract B B') (retr3 : Retract C C') :
Retract (A+B+C) (A'+B'+C') := Retract_sum (Retract_sum retr1 retr2) retr3.
Local Instance Retract_sum4 (A A' B B' C C' D D' : Type) (retr1 : Retract A A') (retr2 : Retract B B') (retr3 : Retract C C') (retr4 : Retract D D') :
Retract (A+B+C+D) (A'+B'+C'+D') := Retract_sum (Retract_sum (Retract_sum retr1 retr2) retr3) retr4.
Local Instance Retract_sum5 (A A' B B' C C' D D' E E' : Type) (retr1 : Retract A A') (retr2 : Retract B B') (retr3 : Retract C C') (retr4 : Retract D D') (retr5 : Retract E E') :
Retract (A+B+C+D+E) (A'+B'+C'+D'+E') := Retract_sum (Retract_sum (Retract_sum (Retract_sum retr1 retr2) retr3) retr4) retr5.
Local Instance Retract_sum6 (A A' B B' C C' D D' E E' F F' : Type) (retr1 : Retract A A') (retr2 : Retract B B') (retr3 : Retract C C') (retr4 : Retract D D') (retr5 : Retract E E') (retr6 : Retract F F') :
Retract (A+B+C+D+E+F) (A'+B'+C'+D'+E'+F') := Retract_sum (Retract_sum (Retract_sum (Retract_sum (Retract_sum retr1 retr2) retr3) retr4) retr5) retr6.
Local Instance Retract_sum7 (A A' B B' C C' D D' E E' F F' G G' : Type) (retr1 : Retract A A') (retr2 : Retract B B') (retr3 : Retract C C') (retr4 : Retract D D') (retr5 : Retract E E') (retr6 : Retract F F') (retr7 : Retract G G') :
Retract (A+B+C+D+E+F+G) (A'+B'+C'+D'+E'+F'+G') := Retract_sum (Retract_sum (Retract_sum (Retract_sum (Retract_sum (Retract_sum retr1 retr2) retr3) retr4) retr5) retr6) retr7.
End MoreSums.