diff --git a/articles/v01-MSnbase-demo.html b/articles/v01-MSnbase-demo.html index 7f19b4a6..5c8e74d1 100644 --- a/articles/v01-MSnbase-demo.html +++ b/articles/v01-MSnbase-demo.html @@ -161,20 +161,20 @@

Questions and bugs

Introduction

-

MSnbase +

MSnbase (Laurent Gatto and Lilley 2012) aims are providing a reproducible research framework to proteomics data analysis. It should allow researcher to easily mine mass spectrometry data, explore the data and its statistical properties and visually display these.

-

MSnbase +

MSnbase also aims at being compatible with the infrastructure implemented in -Bioconductor, in particular Biobase. +Bioconductor, in particular Biobase. As such, classes developed specifically for proteomics mass spectrometry data are based on the eSet and ExpressionSet classes. The main goal is to assure seamless compatibility with existing meta data structure, accessor methods and normalisation techniques.

-

This vignette illustrates MSnbase +

This vignette illustrates MSnbase utility using a dummy data sets provided with the package without describing the underlying data structures. More details can be found in the package, classes, method and function documentations. A description @@ -198,11 +198,11 @@

Speed and memory requirementsBiocParallel +

Parallel support is provided by the BiocParallel and various backends including multicore (forking, default on Linux), simple networf network of workstations (SNOW, default on Windows) using sockets, forking or MPI among others. We refer readers to the -documentation in BiocParallel. +documentation in BiocParallel. Automatic parallel processing of spectra is only established for a certain number of spectra (per file). This value (default is 1000) can be set with the setMSnbaseParallelThresh function.

@@ -234,7 +234,7 @@

Data structure and content

Importing experiments

-

MSnbase +

MSnbase is able to import raw MS data stored in one of the XML-based formats as well as peak lists in the mfg format3.

@@ -254,11 +254,11 @@

Importing experimentsOnly spectra of a given MS level can be loaded at a time by setting the msLevel parameter accordingly in readMSData and in-memory data. In this document, -we will use the itraqdata data set, provided with MSnbase. +we will use the itraqdata data set, provided with MSnbase. It includes feature metadata, accessible with the fData accessor. The metadata includes identification data for the 55 MS2 spectra.

-

Version 2.0 and later of MSnbase +

Version 2.0 and later of MSnbase provide a new on-disk data storage model (see the benchmarking vignette for more details). The new data backend is compatible with the orignal in-memory model. To make use of @@ -294,10 +294,10 @@

Importing experimentson-disk data greatly reduces memory requirement and computation time.

See also section @ref(sec:io2) to import quantitative data stored in -spreadsheets into R for further processing using MSnbase. +spreadsheets into R for further processing using MSnbase. The MSnbase-iovignette[in R, open it with vignette("MSnbase-io") or read it online here] -gives a general overview of MSnbase’s +gives a general overview of MSnbase’s input/ouput capabilites.

See section @ref(sec:io3) for importing chromatographic data of SRM/MRM experiments.

@@ -443,7 +443,7 @@

Reporter ionsReporterIons instances are required to quantify reporter peaks in MSnExp experiments. Instances for the most commonly used isobaric tags like iTRAQ 4-plex and -8-plex and TMT 6- and 10-plex tags are already defined in MSnbase. +8-plex and TMT 6- and 10-plex tags are already defined in MSnbase. See ?ReporterIons for details about how to generate new ReporterIons objects.

@@ -538,7 +538,7 @@ 

Chromatogram objects
 mtof_bpc <- chromatogram(mtof, aggregationFun = "max")

See the Chromatogram help page and the vignettes from -the xcms package +the xcms package for more details and use cases, also on how to extract chromatograms for specific ions.

@@ -551,7 +551,7 @@

MS data space\(m/z\) and retention time ranges. One needs -a raw data file in a format supported by mzR’s +a raw data file in a format supported by mzR’s openMSfile (mzML, mzXML, …). Below we first download a raw data file from the PRIDE repository and create an MSmap containing all the MS1 spectra between acquired @@ -655,7 +655,7 @@

MS Spectra## - - - Processing information - - - ## Data loaded: Wed May 11 18:54:39 2011 ## Updated from version 0.3.0 to 0.3.1 [Fri Jul 8 20:23:25 2016] -## Data [logically] subsetted 3 spectra: Tue Apr 30 16:23:43 2024 +## Data [logically] subsetted 3 spectra: Tue Apr 30 17:23:42 2024 ## MSnbase version: 1.1.22 ## - - - Meta data - - - ## phenoData @@ -685,13 +685,13 @@

MS SpectraMSnbase +

Customising your plots The MSnbase plot methods have a logical plot parameter (default is TRUE), that specifies if the plot should be printed to the current device. A plot object is also (invisibly) returned, so that it can be saved as a variable for later use or for customisation.

-

MSnbase +

MSnbase uses the package to generate plots, which can subsequently easily be customised. More details about can be found in (Wickham 2009) (especially chapter 8) and on http://had.co.nz/ggplot2/. Finally, if a plot object has been saved in a variable p, it is possible to obtain a @@ -724,8 +724,8 @@

Tandem MS identification datamzR package -or mzID from the mzID +the mzR package +or mzID from the mzID package. The MSnbase package relies on the former (which is faster) and offers a simplified interface by converting the dedicated identification data objects into data.frames.

@@ -831,10 +831,10 @@

Tandem MS identification data

Adding identification data

-

MSnbase +

MSnbase is able to integrate identification data from mzIdentML (Jones et al. 2012) files.

-

We first load two example files shipped with the MSnbase +

We first load two example files shipped with the MSnbase containing raw data (as above) and the corresponding identification results respectively. The raw data is read with the readMSData, as demonstrated above. As can be seen, the @@ -944,7 +944,7 @@

Filtering identification data

Calculate Fragments

-

MSnbase +

MSnbase is able to calculate theoretical peptide fragments via calculateFragments.

@@ -1004,7 +1004,7 @@ 

Quality controlMSnbase +

MSnbase allows easy and flexible access to the data, which allows to visualise data features to assess it’s quality. Some methods are readily available, although many QC approaches will be experiment specific and @@ -1140,8 +1140,8 @@

Focusing on specific MZ values## - - - Processing information - - - ## Data loaded: Wed May 11 18:54:39 2011 ## Updated from version 0.3.0 to 0.3.1 [Fri Jul 8 20:23:25 2016] -## Curves <= 400 set to '0': Tue Apr 30 16:23:48 2024 -## Spectra cleaned: Tue Apr 30 16:23:49 2024 +## Curves <= 400 set to '0': Tue Apr 30 17:23:48 2024 +## Spectra cleaned: Tue Apr 30 17:23:48 2024 ## MSnbase version: 1.1.22 ## - - - Meta data - - - ## phenoData @@ -1215,7 +1215,7 @@

Reporter ions quantitationBiobase +that extend the well-known eSet class defined in the Biobase package. MSnSet instances are very similar to ExpressionSet objects, except for the experiment meta-data that captures MIAPE specific information. The assay data is a matrix of @@ -1249,9 +1249,9 @@

Reporter ions quantitation## - - - Processing information - - - ## Data loaded: Wed May 11 18:54:39 2011 ## Updated from version 0.3.0 to 0.3.1 [Fri Jul 8 20:23:25 2016] -## Curves <= 400 set to '0': Tue Apr 30 16:23:48 2024 -## Spectra cleaned: Tue Apr 30 16:23:49 2024 -## iTRAQ4 quantification by trapezoidation: Tue Apr 30 16:23:51 2024 +## Curves <= 400 set to '0': Tue Apr 30 17:23:48 2024 +## Spectra cleaned: Tue Apr 30 17:23:48 2024 +## iTRAQ4 quantification by trapezoidation: Tue Apr 30 17:23:50 2024 ## MSnbase version: 1.1.22

 head(exprs(qnt))
@@ -1317,12 +1317,12 @@

Importing quantitation dataMSnbase +

MSnbase also supports the mzTab format, a light-weight, tab-delimited file format for proteomics data. mzTab files can be read into R with readMzTabData to create and MSnSet instance.

-

See the MSnbase-io vignette for a general overview of MSnbase’s +

See the MSnbase-io vignette for a general overview of MSnbase’s input/ouput capabilites.

@@ -1384,7 +1384,7 @@

Peak adjustments\(+1\) peak of the phenylalanine (F, Phe) immonium ion (with \(m/z\) 120.03) inteferes with the 121.1 TMT reporter ion. Below, we calculate the relative intensity of the +1 peaks -compared to the main peak using the Rdisop +compared to the main peak using the Rdisop package.

 library(Rdisop)
@@ -1472,7 +1472,7 @@ 

Data imputationx <- impute(naset, "min") processingData(x)

## - - - Processing information - - -
-## Data imputation using min Tue Apr 30 16:23:52 2024 
+## Data imputation using min Tue Apr 30 17:23:51 2024 
 ##  MSnbase version: 1.15.6
@@ -1544,7 +1544,7 @@

Data imputation## experimentData: use 'experimentData(object)' ## Annotation: ## - - - Processing information - - - -## Data imputation using mixed Tue Apr 30 16:23:52 2024 +## Data imputation using mixed Tue Apr 30 17:23:52 2024 ## MSnbase version: 1.15.6

Please read ?MsCoreUtils::impute_matix() for a description of the different methods.

@@ -1560,16 +1560,16 @@

Normalisation(Bolstad et al. 2003) as implemented in the -normalize.quantiles function of the preprocessCore +normalize.quantiles function of the preprocessCore package.

  • quantiles.robust: Applies robust quantile normalisation (Bolstad et al. 2003) as implemented in the normalize.quantiles.robust function of -the preprocessCore +the preprocessCore package.

  • vsn: Applies variance stabilisation normalization (Huber et al. 2002) as implemented in the -vsn2 function of the vsn +vsn2 function of the vsn package.

  • max: Each feature’s reporter intensity is divided by the maximum of the reporter ions intensities.

  • @@ -1635,7 +1635,7 @@

    Feature aggregationMSnbase +

    MSnbase provides one function, combineFeatures, that allows to aggregate features stored in an MSnSet using build-in or user defined summary function and return a new MSnSet instance. The @@ -1696,13 +1696,13 @@

    Feature aggregation## - - - Processing information - - - ## Data loaded: Wed May 11 18:54:39 2011 ## Updated from version 0.3.0 to 0.3.1 [Fri Jul 8 20:23:25 2016] -## Curves <= 400 set to '0': Tue Apr 30 16:23:48 2024 -## Spectra cleaned: Tue Apr 30 16:23:49 2024 -## iTRAQ4 quantification by trapezoidation: Tue Apr 30 16:23:51 2024 -## Subset [55,4][54,4] Tue Apr 30 16:23:51 2024 -## Removed features with more than 0 NAs: Tue Apr 30 16:23:51 2024 -## Dropped featureData's levels Tue Apr 30 16:23:51 2024 -## Combined 54 features into 40 using median: Tue Apr 30 16:23:54 2024 +## Curves <= 400 set to '0': Tue Apr 30 17:23:48 2024 +## Spectra cleaned: Tue Apr 30 17:23:48 2024 +## iTRAQ4 quantification by trapezoidation: Tue Apr 30 17:23:50 2024 +## Subset [55,4][54,4] Tue Apr 30 17:23:50 2024 +## Removed features with more than 0 NAs: Tue Apr 30 17:23:50 2024 +## Dropped featureData's levels Tue Apr 30 17:23:50 2024 +## Combined 54 features into 40 using median: Tue Apr 30 17:23:53 2024 ## MSnbase version: 2.29.5

    Of interest is also the iPQF spectra-to-protein summarisation method, which integrates peptide spectra characteristics @@ -1716,7 +1716,7 @@

    Label-free MS2 quantitationPeptide counting

    Note that if samples are not multiplexed, label-free MS2 quantitation -by spectral counting is possible using MSnbase. +by spectral counting is possible using MSnbase. Once individual spectra have been assigned to peptides and proteins (see section @ref(sec:id)), it becomes straightforward to estimate protein quantities using the simple peptide counting method, as illustrated in @@ -1736,7 +1736,7 @@

    Peptide counting## ECA1028 2

    Such count data could then be further analyses using dedicated count methods (originally developed for high-throughput sequencing) and -directly available for MSnSet instances in the msmsTests +directly available for MSnSet instances in the msmsTests Bioconductor package.

    @@ -1778,11 +1778,11 @@

    Spectral counting and intensity siquant <- quantify(msexp, method = "SIn") processingData(siquant)

    ## - - - Processing information - - -
    -## Data loaded: Tue Apr 30 16:23:47 2024 
    -## Filtered 2 unidentified peptides out [Tue Apr 30 16:23:48 2024] 
    -## Quantitation by total ion current [Tue Apr 30 16:23:54 2024] 
    -## Combined 3 features into 3 using sum: Tue Apr 30 16:23:54 2024 
    -## Quantification by SIn [Tue Apr 30 16:23:54 2024] 
    +## Data loaded: Tue Apr 30 17:23:47 2024 
    +## Filtered 2 unidentified peptides out [Tue Apr 30 17:23:47 2024] 
    +## Quantitation by total ion current [Tue Apr 30 17:23:54 2024] 
    +## Combined 3 features into 3 using sum: Tue Apr 30 17:23:54 2024 
    +## Quantification by SIn [Tue Apr 30 17:23:54 2024] 
     ##  MSnbase version: 2.29.5
     exprs(siquant)
    @@ -1801,7 +1801,7 @@

    Spectra comparison

    Plotting two spectra

    -

    MSnbase +

    MSnbase provides functionality to compare spectra against each other. The first notable function is plot. If two Spectrum2 objects are provided plot will draw two plots: the upper and lower @@ -1828,7 +1828,7 @@

    Plotting two spectra

    Comparison metrics

    -

    Currently MSnbase +

    Currently MSnbase supports three different metrics to compare spectra against each other: common to calculate the number of common peaks, cor to calculate the Pearson correlation and @@ -1886,7 +1886,7 @@

    Quantitative assessment of incomplete dissociation -

    MSnbase +

    MSnbase provides, among others, a ReporterIons object for iTRAQ 4-plex that includes the 145 peaks, called iTRAQ5. This can then be used to quantify the experiment as show in section @ref(sec:quant) to @@ -2165,7 +2165,7 @@

    Combine different samples## experimentData: use 'experimentData(object)' ## Annotation: ## - - - Processing information - - - -## Combined [27,4] and [24,4] MSnSets Tue Apr 30 16:24:01 2024 +## Combined [27,4] and [24,4] MSnSets Tue Apr 30 17:24:00 2024 ## MSnbase version: 2.29.5

    In summary, when experiments with different samples need to be combined (along the columns), one needs to (1) clarify the sample names @@ -2231,7 +2231,7 @@

    Averaging MSnSet instances?averageMSnSet.

    The next code chunk illustrates the averaging function using three replicated experiments from (Tan et al. -2009) available in the pRolocdata +2009) available in the pRolocdata package.

     library("pRolocdata")
    @@ -2267,7 +2267,7 @@ 

    Averaging MSnSet instances## Q7KJ73 2 2 2 2 ## Q7JZN0 0 0 0 0

    We are going to visualise the average data on a principle component -(PCA) plot using the plot2D function from the pRoloc +(PCA) plot using the plot2D function from the pRoloc package (L. Gatto et al. 2014). In addition, we are going to use the measure of dispersion to highlight averages with high variability by taking, for each protein, the maximum @@ -2295,12 +2295,12 @@

    Averaging MSnSet instances

    MSE data processing

    -

    MSnbase +

    MSnbase can also be used for MSE data independent acquisition from Waters instrument. The MSE pipeline depends on the -Bioconductor synapter +Bioconductor synapter package (Bond et al. 2013) that produces -MSnSet instances for indvidual acquisitions. The MSnbase +MSnSet instances for indvidual acquisitions. The MSnbase infrastructure can subsequently be used to further combine experiments, as shown in section @ref(sec:comb2) and apply top3 quantitation using the topN method.

    @@ -2308,8 +2308,8 @@

    MSE data processing

    Session information

    -
    ## R version 4.3.3 (2024-02-29)
    -## Platform: x86_64-pc-linux-gnu (64-bit)
    +
    ## R version 4.4.0 Patched (2024-04-24 r86483)
    +## Platform: x86_64-pc-linux-gnu
     ## Running under: Ubuntu 22.04.4 LTS
     ## 
     ## Matrix products: default
    @@ -2332,98 +2332,99 @@ 

    Session information## [8] methods base ## ## other attached packages: -## [1] gplots_3.1.3.1 msdata_0.42.0 pRoloc_1.42.0 -## [4] BiocParallel_1.36.0 MLInterfaces_1.82.0 cluster_2.1.6 -## [7] annotate_1.80.0 XML_3.99-0.16.1 AnnotationDbi_1.64.1 -## [10] IRanges_2.36.0 pRolocdata_1.40.0 Rdisop_1.62.0 -## [13] zoo_1.8-12 MSnbase_2.29.5 ProtGenerics_1.34.0 -## [16] S4Vectors_0.40.2 mzR_2.36.0 Rcpp_1.0.12 -## [19] Biobase_2.62.0 BiocGenerics_0.48.1 ggplot2_3.5.1 -## [22] BiocStyle_2.30.0 +## [1] gplots_3.1.3.1 msdata_0.43.0 pRoloc_1.43.2 +## [4] BiocParallel_1.37.1 MLInterfaces_1.83.0 cluster_2.1.6 +## [7] annotate_1.81.2 XML_3.99-0.16.1 AnnotationDbi_1.65.2 +## [10] IRanges_2.37.1 pRolocdata_1.41.0 Rdisop_1.63.0 +## [13] zoo_1.8-12 MSnbase_2.29.5 ProtGenerics_1.35.4 +## [16] S4Vectors_0.41.7 mzR_2.37.3 Rcpp_1.0.12 +## [19] Biobase_2.63.1 BiocGenerics_0.49.1 ggplot2_3.5.1 +## [22] BiocStyle_2.31.0 ## ## loaded via a namespace (and not attached): -## [1] splines_4.3.3 bitops_1.0-7 +## [1] splines_4.4.0 bitops_1.0-7 ## [3] filelock_1.0.3 tibble_3.2.1 ## [5] hardhat_1.3.1 preprocessCore_1.61.0 ## [7] pROC_1.18.5 rpart_4.1.23 -## [9] lifecycle_1.0.4 doParallel_1.0.17 -## [11] globals_0.16.3 lattice_0.22-6 -## [13] MASS_7.3-60.0.1 MultiAssayExperiment_1.28.0 -## [15] dendextend_1.17.1 magrittr_2.0.3 -## [17] limma_3.58.1 plotly_4.10.4 -## [19] sass_0.4.9 rmarkdown_2.26 -## [21] jquerylib_0.1.4 yaml_2.3.8 -## [23] MsCoreUtils_1.14.1 DBI_1.2.2 -## [25] RColorBrewer_1.1-3 lubridate_1.9.3 -## [27] abind_1.4-5 zlibbioc_1.48.2 -## [29] GenomicRanges_1.54.1 purrr_1.0.2 -## [31] mixtools_2.0.0 AnnotationFilter_1.26.0 -## [33] RCurl_1.98-1.14 nnet_7.3-19 -## [35] rappdirs_0.3.3 ipred_0.9-14 -## [37] lava_1.8.0 GenomeInfoDbData_1.2.11 -## [39] listenv_0.9.1 parallelly_1.37.1 -## [41] pkgdown_2.0.9.9000 ncdf4_1.22 -## [43] codetools_0.2-20 DelayedArray_0.28.0 -## [45] xml2_1.3.6 tidyselect_1.2.1 -## [47] farver_2.1.1 viridis_0.6.5 -## [49] matrixStats_1.3.0 BiocFileCache_2.10.2 -## [51] jsonlite_1.8.8 caret_6.0-94 -## [53] e1071_1.7-14 survival_3.6-4 -## [55] iterators_1.0.14 systemfonts_1.0.6 -## [57] foreach_1.5.2 segmented_2.0-4 -## [59] tools_4.3.3 progress_1.2.3 -## [61] ragg_1.3.0 glue_1.7.0 -## [63] prodlim_2023.08.28 gridExtra_2.3 -## [65] SparseArray_1.2.4 mgcv_1.9-1 -## [67] xfun_0.43 MatrixGenerics_1.14.0 -## [69] GenomeInfoDb_1.38.8 dplyr_1.1.4 -## [71] withr_3.0.0 BiocManager_1.30.22 -## [73] fastmap_1.1.1 fansi_1.0.6 -## [75] caTools_1.18.2 digest_0.6.35 -## [77] timechange_0.3.0 R6_2.5.1 -## [79] textshaping_0.3.7 colorspace_2.1-0 -## [81] gtools_3.9.5 lpSolve_5.6.20 -## [83] biomaRt_2.58.2 RSQLite_2.3.6 -## [85] utf8_1.2.4 tidyr_1.3.1 -## [87] generics_0.1.3 hexbin_1.28.3 -## [89] data.table_1.15.4 recipes_1.0.10 -## [91] FNN_1.1.4 class_7.3-22 -## [93] prettyunits_1.2.0 PSMatch_1.6.0 -## [95] httr_1.4.7 htmlwidgets_1.6.4 -## [97] S4Arrays_1.2.1 ModelMetrics_1.2.2.2 -## [99] pkgconfig_2.0.3 gtable_0.3.5 -## [101] timeDate_4032.109 blob_1.2.4 -## [103] impute_1.76.0 XVector_0.42.0 -## [105] htmltools_0.5.8.1 bookdown_0.39 -## [107] MALDIquant_1.22.2 clue_0.3-65 -## [109] scales_1.3.0 png_0.1-8 -## [111] gower_1.0.1 knitr_1.46 -## [113] reshape2_1.4.4 coda_0.19-4.1 -## [115] nlme_3.1-164 curl_5.2.1 -## [117] proxy_0.4-27 cachem_1.0.8 -## [119] stringr_1.5.1 KernSmooth_2.23-22 -## [121] parallel_4.3.3 mzID_1.40.0 -## [123] vsn_3.70.0 desc_1.4.3 -## [125] pillar_1.9.0 vctrs_0.6.5 -## [127] pcaMethods_1.94.0 randomForest_4.7-1.1 -## [129] dbplyr_2.5.0 xtable_1.8-4 -## [131] evaluate_0.23 mvtnorm_1.2-4 -## [133] cli_3.6.2 compiler_4.3.3 -## [135] rlang_1.1.3 crayon_1.5.2 -## [137] future.apply_1.11.2 labeling_0.4.3 -## [139] LaplacesDemon_16.1.6 mclust_6.1.1 -## [141] QFeatures_1.12.0 affy_1.80.0 -## [143] plyr_1.8.9 fs_1.6.4 -## [145] stringi_1.8.3 viridisLite_0.4.2 -## [147] munsell_0.5.1 Biostrings_2.70.3 -## [149] lazyeval_0.2.2 Matrix_1.6-5 -## [151] hms_1.1.3 future_1.33.2 -## [153] bit64_4.0.5 KEGGREST_1.42.0 -## [155] statmod_1.5.0 highr_0.10 -## [157] SummarizedExperiment_1.32.0 kernlab_0.9-32 -## [159] igraph_2.0.3 memoise_2.0.1 -## [161] affyio_1.72.0 bslib_0.7.0 -## [163] sampling_2.10 bit_4.0.5

    +## [9] lifecycle_1.0.4 httr2_1.0.1 +## [11] doParallel_1.0.17 globals_0.16.3 +## [13] lattice_0.22-6 MASS_7.3-60.2 +## [15] MultiAssayExperiment_1.29.2 dendextend_1.17.1 +## [17] magrittr_2.0.3 limma_3.59.10 +## [19] plotly_4.10.4 sass_0.4.9 +## [21] rmarkdown_2.26 jquerylib_0.1.4 +## [23] yaml_2.3.8 MsCoreUtils_1.15.7 +## [25] DBI_1.2.2 RColorBrewer_1.1-3 +## [27] lubridate_1.9.3 abind_1.4-5 +## [29] zlibbioc_1.49.3 GenomicRanges_1.55.4 +## [31] purrr_1.0.2 mixtools_2.0.0 +## [33] AnnotationFilter_1.27.0 RCurl_1.98-1.14 +## [35] nnet_7.3-19 rappdirs_0.3.3 +## [37] ipred_0.9-14 lava_1.8.0 +## [39] GenomeInfoDbData_1.2.12 listenv_0.9.1 +## [41] parallelly_1.37.1 pkgdown_2.0.9.9000 +## [43] ncdf4_1.22 codetools_0.2-20 +## [45] DelayedArray_0.29.9 xml2_1.3.6 +## [47] tidyselect_1.2.1 farver_2.1.1 +## [49] UCSC.utils_0.99.7 viridis_0.6.5 +## [51] matrixStats_1.3.0 BiocFileCache_2.11.2 +## [53] jsonlite_1.8.8 caret_6.0-94 +## [55] e1071_1.7-14 survival_3.6-4 +## [57] iterators_1.0.14 systemfonts_1.0.6 +## [59] foreach_1.5.2 segmented_2.0-4 +## [61] tools_4.4.0 progress_1.2.3 +## [63] ragg_1.3.0 glue_1.7.0 +## [65] prodlim_2023.08.28 gridExtra_2.3 +## [67] SparseArray_1.3.7 mgcv_1.9-1 +## [69] xfun_0.43 MatrixGenerics_1.15.1 +## [71] GenomeInfoDb_1.39.14 dplyr_1.1.4 +## [73] withr_3.0.0 BiocManager_1.30.22 +## [75] fastmap_1.1.1 fansi_1.0.6 +## [77] caTools_1.18.2 digest_0.6.35 +## [79] timechange_0.3.0 R6_2.5.1 +## [81] textshaping_0.3.7 colorspace_2.1-0 +## [83] gtools_3.9.5 lpSolve_5.6.20 +## [85] biomaRt_2.59.1 RSQLite_2.3.6 +## [87] utf8_1.2.4 tidyr_1.3.1 +## [89] generics_0.1.3 hexbin_1.28.3 +## [91] data.table_1.15.4 recipes_1.0.10 +## [93] FNN_1.1.4 class_7.3-22 +## [95] prettyunits_1.2.0 PSMatch_1.7.2 +## [97] httr_1.4.7 htmlwidgets_1.6.4 +## [99] S4Arrays_1.3.7 ModelMetrics_1.2.2.2 +## [101] pkgconfig_2.0.3 gtable_0.3.5 +## [103] timeDate_4032.109 blob_1.2.4 +## [105] impute_1.77.0 XVector_0.43.1 +## [107] htmltools_0.5.8.1 bookdown_0.39 +## [109] MALDIquant_1.22.2 clue_0.3-65 +## [111] scales_1.3.0 png_0.1-8 +## [113] gower_1.0.1 knitr_1.46 +## [115] reshape2_1.4.4 coda_0.19-4.1 +## [117] nlme_3.1-164 curl_5.2.1 +## [119] proxy_0.4-27 cachem_1.0.8 +## [121] stringr_1.5.1 KernSmooth_2.23-22 +## [123] parallel_4.4.0 mzID_1.41.0 +## [125] vsn_3.71.1 desc_1.4.3 +## [127] pillar_1.9.0 vctrs_0.6.5 +## [129] pcaMethods_1.95.0 randomForest_4.7-1.1 +## [131] dbplyr_2.5.0 xtable_1.8-4 +## [133] evaluate_0.23 mvtnorm_1.2-4 +## [135] cli_3.6.2 compiler_4.4.0 +## [137] rlang_1.1.3 crayon_1.5.2 +## [139] future.apply_1.11.2 labeling_0.4.3 +## [141] LaplacesDemon_16.1.6 mclust_6.1.1 +## [143] QFeatures_1.13.7 affy_1.81.0 +## [145] plyr_1.8.9 fs_1.6.4 +## [147] stringi_1.8.3 viridisLite_0.4.2 +## [149] munsell_0.5.1 Biostrings_2.71.6 +## [151] lazyeval_0.2.2 Matrix_1.7-0 +## [153] hms_1.1.3 future_1.33.2 +## [155] bit64_4.0.5 KEGGREST_1.43.1 +## [157] statmod_1.5.0 highr_0.10 +## [159] SummarizedExperiment_1.33.3 kernlab_0.9-32 +## [161] igraph_2.0.3 memoise_2.0.1 +## [163] affyio_1.73.0 bslib_0.7.0 +## [165] sampling_2.10 bit_4.0.5

    References @@ -2569,8 +2570,8 @@

    References

    This part will be automatically updated when the object is modified with it’s ad hoc methods, as illustrated later.↩︎

  • The identification data can also be passed as dedicated -identification objects such as mzRident from the mzR package -or mzID from thr mzID +identification objects such as mzRident from the mzR package +or mzID from thr mzID package, or as a data.frame - see ?addIdentifionData for details.↩︎

  • The code to generate the histograms has been contributed diff --git a/articles/v01-MSnbase-demo_files/figure-html/idvis-1.png b/articles/v01-MSnbase-demo_files/figure-html/idvis-1.png index 6203c03b..1085b04c 100644 Binary files a/articles/v01-MSnbase-demo_files/figure-html/idvis-1.png and b/articles/v01-MSnbase-demo_files/figure-html/idvis-1.png differ diff --git a/articles/v01-MSnbase-demo_files/figure-html/normPlot-1.png b/articles/v01-MSnbase-demo_files/figure-html/normPlot-1.png index 5757372c..59409fb6 100644 Binary files a/articles/v01-MSnbase-demo_files/figure-html/normPlot-1.png and b/articles/v01-MSnbase-demo_files/figure-html/normPlot-1.png differ diff --git a/articles/v01-MSnbase-demo_files/figure-html/plot2Davg-1.png b/articles/v01-MSnbase-demo_files/figure-html/plot2Davg-1.png index 33a37f2e..8cc4de85 100644 Binary files a/articles/v01-MSnbase-demo_files/figure-html/plot2Davg-1.png and b/articles/v01-MSnbase-demo_files/figure-html/plot2Davg-1.png differ diff --git a/articles/v02-MSnbase-io.html b/articles/v02-MSnbase-io.html index 828429ff..27de16c5 100644 --- a/articles/v02-MSnbase-io.html +++ b/articles/v02-MSnbase-io.html @@ -138,7 +138,7 @@

    Questions and bugs

    Overview

    -

    MSnbase’s +

    MSnbase’s aims are to facilitate the reproducible analysis of mass spectrometry data within the R environment, from raw data import and processing, feature quantification, quantification and statistical analysis of the @@ -158,7 +158,7 @@

    Raw data(Orchard et al. 2007) or mzML (Martens et al. 2010), can be imported with the readMSData method, -which makes use of the mzR package +which makes use of the mzR package to create MSnExp objects. The files can be in profile or centroided mode. See ?readMSData for details.

    Data from mzML files containing chromatographic data @@ -183,7 +183,7 @@

    Quantitation datareadMSnSet function. See ?readMSnSet for details.

    -

    MSnbase +

    MSnbase also supports the mzTab format2, a light-weight, tab-delimited file format for proteomics data developed within the Proteomics Standards Initiative (PSI). mzTab files can be @@ -247,7 +247,7 @@

    Creating MSnSet fr

    This section describes the generation of MSnSet objects using data available in a text-based spreadsheet. This entry point into -R and MSnbase +R and MSnbase allows to import data processed by any of the third party mass-spectrometry processing software available and proceed with data exploration, normalisation and statistical analysis using functions @@ -258,8 +258,8 @@

    A complete work flowpRoloc -tutorial and uses example files from the pRolocdat +feature meta-data. It is taken from the pRoloc +tutorial and uses example files from the pRolocdat package.

    We start by describing the csv to be used as input using the read.csv function.

    @@ -367,7 +367,7 @@

    A complete work flow## experimentData: use 'experimentData(object)' ## Annotation: ## - - - Processing information - - - -## Quantitation data loaded: Tue Apr 30 16:24:16 2024 using readMSnSet. +## Quantitation data loaded: Tue Apr 30 17:24:16 2024 using readMSnSet. ## MSnbase version: 2.29.5

    The MSnSet class @@ -479,8 +479,8 @@

    Session information
     sessionInfo()

    -
    ## R version 4.3.3 (2024-02-29)
    -## Platform: x86_64-pc-linux-gnu (64-bit)
    +
    ## R version 4.4.0 Patched (2024-04-24 r86483)
    +## Platform: x86_64-pc-linux-gnu
     ## Running under: Ubuntu 22.04.4 LTS
     ## 
     ## Matrix products: default
    @@ -503,58 +503,60 @@ 

    Session information## [8] base ## ## other attached packages: -## [1] pRolocdata_1.40.0 MSnbase_2.29.5 ProtGenerics_1.34.0 -## [4] S4Vectors_0.40.2 mzR_2.36.0 Rcpp_1.0.12 -## [7] Biobase_2.62.0 BiocGenerics_0.48.1 BiocStyle_2.30.0 +## [1] pRolocdata_1.41.0 MSnbase_2.29.5 ProtGenerics_1.35.4 +## [4] S4Vectors_0.41.7 mzR_2.37.3 Rcpp_1.0.12 +## [7] Biobase_2.63.1 BiocGenerics_0.49.1 BiocStyle_2.31.0 ## ## loaded via a namespace (and not attached): ## [1] bitops_1.0-7 rlang_1.1.3 ## [3] magrittr_2.0.3 clue_0.3-65 -## [5] matrixStats_1.3.0 compiler_4.3.3 +## [5] matrixStats_1.3.0 compiler_4.4.0 ## [7] systemfonts_1.0.6 vctrs_0.6.5 ## [9] pkgconfig_2.0.3 crayon_1.5.2 -## [11] fastmap_1.1.1 XVector_0.42.0 +## [11] fastmap_1.1.1 XVector_0.43.1 ## [13] utf8_1.2.4 rmarkdown_2.26 -## [15] preprocessCore_1.61.0 ragg_1.3.0 -## [17] purrr_1.0.2 xfun_0.43 -## [19] MultiAssayExperiment_1.28.0 zlibbioc_1.48.2 -## [21] cachem_1.0.8 GenomeInfoDb_1.38.8 -## [23] jsonlite_1.8.8 DelayedArray_0.28.0 -## [25] BiocParallel_1.36.0 parallel_4.3.3 -## [27] cluster_2.1.6 R6_2.5.1 -## [29] bslib_0.7.0 limma_3.58.1 -## [31] GenomicRanges_1.54.1 jquerylib_0.1.4 -## [33] bookdown_0.39 SummarizedExperiment_1.32.0 -## [35] iterators_1.0.14 knitr_1.46 -## [37] IRanges_2.36.0 Matrix_1.6-5 -## [39] igraph_2.0.3 tidyselect_1.2.1 -## [41] abind_1.4-5 yaml_2.3.8 -## [43] doParallel_1.0.17 codetools_0.2-20 -## [45] affy_1.80.0 lattice_0.22-6 -## [47] tibble_3.2.1 plyr_1.8.9 -## [49] evaluate_0.23 desc_1.4.3 -## [51] pillar_1.9.0 affyio_1.72.0 -## [53] BiocManager_1.30.22 MatrixGenerics_1.14.0 -## [55] foreach_1.5.2 MALDIquant_1.22.2 -## [57] ncdf4_1.22 generics_0.1.3 -## [59] RCurl_1.98-1.14 ggplot2_3.5.1 -## [61] munsell_0.5.1 scales_1.3.0 -## [63] glue_1.7.0 lazyeval_0.2.2 -## [65] tools_4.3.3 mzID_1.40.0 -## [67] QFeatures_1.12.0 vsn_3.70.0 -## [69] fs_1.6.4 XML_3.99-0.16.1 -## [71] grid_4.3.3 impute_1.76.0 -## [73] MsCoreUtils_1.14.1 colorspace_2.1-0 -## [75] GenomeInfoDbData_1.2.11 PSMatch_1.6.0 -## [77] cli_3.6.2 textshaping_0.3.7 -## [79] fansi_1.0.6 S4Arrays_1.2.1 -## [81] dplyr_1.1.4 AnnotationFilter_1.26.0 -## [83] pcaMethods_1.94.0 gtable_0.3.5 -## [85] sass_0.4.9 digest_0.6.35 -## [87] SparseArray_1.2.4 htmlwidgets_1.6.4 -## [89] memoise_2.0.1 htmltools_0.5.8.1 -## [91] pkgdown_2.0.9.9000 lifecycle_1.0.4 -## [93] statmod_1.5.0 MASS_7.3-60.0.1

    +## [15] UCSC.utils_0.99.7 preprocessCore_1.61.0 +## [17] ragg_1.3.0 purrr_1.0.2 +## [19] xfun_0.43 MultiAssayExperiment_1.29.2 +## [21] zlibbioc_1.49.3 cachem_1.0.8 +## [23] GenomeInfoDb_1.39.14 jsonlite_1.8.8 +## [25] DelayedArray_0.29.9 BiocParallel_1.37.1 +## [27] parallel_4.4.0 cluster_2.1.6 +## [29] R6_2.5.1 bslib_0.7.0 +## [31] limma_3.59.10 GenomicRanges_1.55.4 +## [33] jquerylib_0.1.4 bookdown_0.39 +## [35] SummarizedExperiment_1.33.3 iterators_1.0.14 +## [37] knitr_1.46 IRanges_2.37.1 +## [39] Matrix_1.7-0 igraph_2.0.3 +## [41] tidyselect_1.2.1 abind_1.4-5 +## [43] yaml_2.3.8 doParallel_1.0.17 +## [45] codetools_0.2-20 affy_1.81.0 +## [47] lattice_0.22-6 tibble_3.2.1 +## [49] plyr_1.8.9 evaluate_0.23 +## [51] desc_1.4.3 pillar_1.9.0 +## [53] affyio_1.73.0 BiocManager_1.30.22 +## [55] MatrixGenerics_1.15.1 foreach_1.5.2 +## [57] MALDIquant_1.22.2 ncdf4_1.22 +## [59] generics_0.1.3 RCurl_1.98-1.14 +## [61] ggplot2_3.5.1 munsell_0.5.1 +## [63] scales_1.3.0 glue_1.7.0 +## [65] lazyeval_0.2.2 tools_4.4.0 +## [67] mzID_1.41.0 QFeatures_1.13.7 +## [69] vsn_3.71.1 fs_1.6.4 +## [71] XML_3.99-0.16.1 grid_4.4.0 +## [73] impute_1.77.0 tidyr_1.3.1 +## [75] MsCoreUtils_1.15.7 colorspace_2.1-0 +## [77] GenomeInfoDbData_1.2.12 PSMatch_1.7.2 +## [79] cli_3.6.2 textshaping_0.3.7 +## [81] fansi_1.0.6 S4Arrays_1.3.7 +## [83] dplyr_1.1.4 AnnotationFilter_1.27.0 +## [85] pcaMethods_1.95.0 gtable_0.3.5 +## [87] sass_0.4.9 digest_0.6.35 +## [89] SparseArray_1.3.7 htmlwidgets_1.6.4 +## [91] memoise_2.0.1 htmltools_0.5.8.1 +## [93] pkgdown_2.0.9.9000 lifecycle_1.0.4 +## [95] httr_1.4.7 statmod_1.5.0 +## [97] MASS_7.3-60.2

  • References diff --git a/articles/v03-MSnbase-centroiding.html b/articles/v03-MSnbase-centroiding.html index d5e48a0d..8ac7c36d 100644 --- a/articles/v03-MSnbase-centroiding.html +++ b/articles/v03-MSnbase-centroiding.html @@ -131,7 +131,7 @@

    Introductionxcms package +centWave method in the xcms package for chromatographic peak detection in LC-MS experiments or proteomics search engines that match MS2 spectra to peptides, require the data to be in centroid mode. In this vignette, we will focus on metabolomics diff --git a/articles/v03-MSnbase-centroiding_files/figure-html/proline-1.png b/articles/v03-MSnbase-centroiding_files/figure-html/proline-1.png index 701371fe..1d4df498 100644 Binary files a/articles/v03-MSnbase-centroiding_files/figure-html/proline-1.png and b/articles/v03-MSnbase-centroiding_files/figure-html/proline-1.png differ diff --git a/articles/v03-MSnbase-centroiding_files/figure-html/proline-rtsmooth-1.png b/articles/v03-MSnbase-centroiding_files/figure-html/proline-rtsmooth-1.png index 7132ae5d..33969505 100644 Binary files a/articles/v03-MSnbase-centroiding_files/figure-html/proline-rtsmooth-1.png and b/articles/v03-MSnbase-centroiding_files/figure-html/proline-rtsmooth-1.png differ diff --git a/articles/v03-MSnbase-centroiding_files/figure-html/refineMz-proline-1.png b/articles/v03-MSnbase-centroiding_files/figure-html/refineMz-proline-1.png index 6a47f6c2..14c92716 100644 Binary files a/articles/v03-MSnbase-centroiding_files/figure-html/refineMz-proline-1.png and b/articles/v03-MSnbase-centroiding_files/figure-html/refineMz-proline-1.png differ diff --git a/articles/v03-MSnbase-centroiding_files/figure-html/refineMz-serine-1.png b/articles/v03-MSnbase-centroiding_files/figure-html/refineMz-serine-1.png index 89dc9510..ed1fd545 100644 Binary files a/articles/v03-MSnbase-centroiding_files/figure-html/refineMz-serine-1.png and b/articles/v03-MSnbase-centroiding_files/figure-html/refineMz-serine-1.png differ diff --git a/articles/v03-MSnbase-centroiding_files/figure-html/serine-plot-1.png b/articles/v03-MSnbase-centroiding_files/figure-html/serine-plot-1.png index 6e76d09f..cf13ffe7 100644 Binary files a/articles/v03-MSnbase-centroiding_files/figure-html/serine-plot-1.png and b/articles/v03-MSnbase-centroiding_files/figure-html/serine-plot-1.png differ diff --git a/articles/v03-MSnbase-centroiding_files/figure-html/simple-pickPeaks-1.png b/articles/v03-MSnbase-centroiding_files/figure-html/simple-pickPeaks-1.png index d5629d48..b7ae6e77 100644 Binary files a/articles/v03-MSnbase-centroiding_files/figure-html/simple-pickPeaks-1.png and b/articles/v03-MSnbase-centroiding_files/figure-html/simple-pickPeaks-1.png differ diff --git a/articles/v03-MSnbase-centroiding_files/figure-html/smoothSG-pp-proline-1.png b/articles/v03-MSnbase-centroiding_files/figure-html/smoothSG-pp-proline-1.png index 011c0f09..42e92e4f 100644 Binary files a/articles/v03-MSnbase-centroiding_files/figure-html/smoothSG-pp-proline-1.png and b/articles/v03-MSnbase-centroiding_files/figure-html/smoothSG-pp-proline-1.png differ diff --git a/articles/v03-MSnbase-centroiding_files/figure-html/smoothSG-pp-serine-1.png b/articles/v03-MSnbase-centroiding_files/figure-html/smoothSG-pp-serine-1.png index 9bb5afaa..eae2b3ef 100644 Binary files a/articles/v03-MSnbase-centroiding_files/figure-html/smoothSG-pp-serine-1.png and b/articles/v03-MSnbase-centroiding_files/figure-html/smoothSG-pp-serine-1.png differ diff --git a/articles/v04-benchmarking.html b/articles/v04-benchmarking.html index e2c5eb7b..42770004 100644 --- a/articles/v04-benchmarking.html +++ b/articles/v04-benchmarking.html @@ -112,7 +112,7 @@

    Laurent

    Introduction

    In this vignette, we will document various timings and benchmarkings -of the MSnbase +of the MSnbase version 2, that focuses on on-disk data access (as opposed to in-memory). More details about the new implementation are documented in the respective classes manual pages and in

    @@ -123,7 +123,7 @@

    Introductionmsdata +with the msdata package

    ## [1] "TMT_Erwinia_1uLSike_Top10HCD_isol2_45stepped_60min_01.mzML.gz"
    -

    We need to load the MSnbase +

    We need to load the MSnbase package and set the session-wide verbosity flag to FALSE.

    @@ -154,7 +154,7 @@ 

    Reading data= "inMemory", centroided = TRUE))

    ##    user  system elapsed 
    -##   3.653   0.120   3.779
    +## 3.626 0.111 3.748

    Next, we use the readMSData function to generate an on-disk representation of the same data by setting mode = "onDisk".

    @@ -163,7 +163,7 @@

    Reading data= "onDisk", centroided = TRUE))

    ##    user  system elapsed 
    -##   1.269   0.024   1.287
    +## 1.257 0.036 1.289

    Creating the on-disk experiment is considerable faster and scales to much bigger, multi-file data, both in terms of object creation time, but also in terms of object size (see next section). We must of course make @@ -217,16 +217,16 @@

    Accessing spectra= 10) mb
    ## Unit: microseconds
    -##             expr        min         lq        mean      median         uq
    -##   spectra(inmem)     58.780     72.185    143.8212    165.6485    187.941
    -##     inmem[[200]]     16.961     18.755     40.6848     43.3460     61.404
    -##  spectra(ondisk) 292370.549 292919.023 295463.0374 294919.4175 296032.417
    -##    ondisk[[200]] 161233.552 162128.079 164210.7864 162841.5990 164913.371
    +##             expr        min         lq        mean     median         uq
    +##   spectra(inmem)     58.760     62.556    135.5678    161.256    175.577
    +##     inmem[[200]]     18.505     18.755     40.6592     43.852     57.698
    +##  spectra(ondisk) 295593.670 296351.244 299130.7132 297202.829 301726.968
    +##    ondisk[[200]] 162731.286 162840.390 165374.5058 164705.441 165468.135
     ##         max neval
    -##     206.405    10
    -##      64.360    10
    -##  301520.457    10
    -##  171958.013    10
    +## 186.187 10 +## 65.703 10 +## 306549.931 10 +## 171134.481 10

    While it takes order or magnitudes more time to access the data on-the-fly rather than a pre-generated spectrum, accessing all spectra is only marginally slower than accessing all spectra, as most of the @@ -248,11 +248,11 @@

    Accessing spectrai <- sample(length(inmem), 100) system.time(inmem[i])
    ##    user  system elapsed 
    -##   0.071   0.000   0.072
    +## 0.067 0.000 0.068
     system.time(ondisk[i])
    ##    user  system elapsed 
    -##    0.01    0.00    0.01
    +## 0.009 0.000 0.009

    Operations on the spectra data, such as peak picking, smoothing, cleaning, … are cleverly cached and only applied when the data is accessed, to minimise file access overhead. Finally, specific operations @@ -269,12 +269,12 @@

    MS2 quantitationsystem.time(eim <- quantify(inmem[1:100], reporters = TMT6, method = "max"))
    ##    user  system elapsed 
    -##   5.735   1.174   3.682
    +## 5.603 1.205 3.624
     system.time(eod <- quantify(ondisk[1:100], reporters = TMT6,
                                 method = "max"))
    ##    user  system elapsed 
    -##   0.221   0.055   0.257
    +## 0.214 0.064 0.258
     all.equal(eim, eod, check.attributes = FALSE)
    ## [1] TRUE
    @@ -303,7 +303,7 @@

    Serialisationload()ed, while on-disk can’t. As a workaround, the latter can be coerced to in-memory instances with as(, "MSnExp"). We would need mzML write -support in mzR to be +support in mzR to be able to implement serialisation for on-disk data.

    @@ -331,7 +331,7 @@

    ConclusionsMSnbase +class and MSnbase in general, see other vignettes available with

     vignette(package = "MSnbase")
    diff --git a/articles/v05-MSnbase-development.html b/articles/v05-MSnbase-development.html index 6c017227..8489ea26 100644 --- a/articles/v05-MSnbase-development.html +++ b/articles/v05-MSnbase-development.html @@ -155,18 +155,18 @@

    Questions and bugsIntroduction

    This document is not a replacement for the individual manual pages, -that document the slots of the MSnbase +that document the slots of the MSnbase classes. It is a centralised high-level description of the package design.

    -

    MSnbase -aims at being compatible with the Biobase +

    MSnbase +aims at being compatible with the Biobase infrastructure (Gentleman et al. 2004). Many meta data structures that are used in eSet and associated classes are also used here. As such, knowledge of the Biobase development and the new eSet vignette would be beneficial; the vignette can directly be accessed with vignette("BiobaseDevelopment", package="Biobase").

    -

    The initial goal is to use the MSnbase +

    The initial goal is to use the MSnbase infrastructure for MS2 labelled (iTRAQ (Ross et al. 2004) and TMT (Thompson et al. 2003)) and label-free (spectral counting, index and abundance) @@ -215,11 +215,11 @@

    Coding style

    -MSnbase +MSnbase classes

    All classes have a .__classVersion__ slot, of class -Versioned from the Biobase +Versioned from the Biobase package. This slot documents the class version for any instance to be used for debugging and object update purposes. Any change in a class implementation should trigger a version change.

    @@ -306,7 +306,7 @@

    slot. The actual M/Z and intensity values from the individual spectra are, in contrast to MSnExp objects, not kept in memory (in the assayData slot), but are fetched from the original -files on-demand. Because mzML files are indexed, using the mzR package +files on-demand. Because mzML files are indexed, using the mzR package to read the relevant spectrum data is fast and only moderately slower than for in-memory MSnExp1.

    To keep track of data manipulation steps that are applied to spectrum @@ -326,7 +326,7 @@

    all corresponding method implementations for OnDiskMSnExp objects have an argument BPPARAM and users can set a PARALLEL_THRESH option flag2 that enables to define -how and when parallel processing should be performed (using the BiocParallel +how and when parallel processing should be performed (using the BiocParallel package).

    Note that all data manipulations that are not applied to M/Z or intensity values of a spectrum (e.g. sub-setting by retention time etc) @@ -445,7 +445,7 @@

    new processing that is implemented should be documented and logged here.

    It also documents the raw data file from which the data originates -(files slot) and the MSnbase +(files slot) and the MSnbase version that was in use when the MSnProcess instance, and hence the MSnExp/MSnSet objects, were originally created.

    @@ -678,7 +678,6 @@

    ## Extends: ## Class "matrix", from data part ## Class "array", by class "matrix", distance 2 -## Class "replValueSp", by class "matrix", distance 2 ## Class "structure", by class "matrix", distance 3 ## Class "matrix_OR_array_OR_table_OR_numeric", by class "matrix", distance 3 ## Class "vector", by class "matrix", distance 4, with explicit coerce @@ -716,7 +715,7 @@

    Miscellaneous
    Unit tests
    -

    MSnbase +

    MSnbase implements unit tests with the testthat package.

    @@ -734,8 +733,8 @@

    Session information
     sessionInfo()
    -
    ## R version 4.3.3 (2024-02-29)
    -## Platform: x86_64-pc-linux-gnu (64-bit)
    +
    ## R version 4.4.0 Patched (2024-04-24 r86483)
    +## Platform: x86_64-pc-linux-gnu
     ## Running under: Ubuntu 22.04.4 LTS
     ## 
     ## Matrix products: default
    @@ -758,58 +757,60 @@ 

    Session information## [8] base ## ## other attached packages: -## [1] MSnbase_2.29.5 ProtGenerics_1.34.0 S4Vectors_0.40.2 -## [4] mzR_2.36.0 Rcpp_1.0.12 Biobase_2.62.0 -## [7] BiocGenerics_0.48.1 BiocStyle_2.30.0 +## [1] MSnbase_2.29.5 ProtGenerics_1.35.4 S4Vectors_0.41.7 +## [4] mzR_2.37.3 Rcpp_1.0.12 Biobase_2.63.1 +## [7] BiocGenerics_0.49.1 BiocStyle_2.31.0 ## ## loaded via a namespace (and not attached): ## [1] bitops_1.0-7 rlang_1.1.3 ## [3] magrittr_2.0.3 clue_0.3-65 -## [5] matrixStats_1.3.0 compiler_4.3.3 +## [5] matrixStats_1.3.0 compiler_4.4.0 ## [7] systemfonts_1.0.6 vctrs_0.6.5 ## [9] pkgconfig_2.0.3 crayon_1.5.2 -## [11] fastmap_1.1.1 XVector_0.42.0 +## [11] fastmap_1.1.1 XVector_0.43.1 ## [13] utf8_1.2.4 rmarkdown_2.26 -## [15] preprocessCore_1.61.0 ragg_1.3.0 -## [17] purrr_1.0.2 xfun_0.43 -## [19] MultiAssayExperiment_1.28.0 zlibbioc_1.48.2 -## [21] cachem_1.0.8 GenomeInfoDb_1.38.8 -## [23] jsonlite_1.8.8 DelayedArray_0.28.0 -## [25] BiocParallel_1.36.0 parallel_4.3.3 -## [27] cluster_2.1.6 R6_2.5.1 -## [29] bslib_0.7.0 limma_3.58.1 -## [31] GenomicRanges_1.54.1 jquerylib_0.1.4 -## [33] bookdown_0.39 SummarizedExperiment_1.32.0 -## [35] iterators_1.0.14 knitr_1.46 -## [37] IRanges_2.36.0 Matrix_1.6-5 -## [39] igraph_2.0.3 tidyselect_1.2.1 -## [41] abind_1.4-5 yaml_2.3.8 -## [43] doParallel_1.0.17 codetools_0.2-20 -## [45] affy_1.80.0 lattice_0.22-6 -## [47] tibble_3.2.1 plyr_1.8.9 -## [49] evaluate_0.23 desc_1.4.3 -## [51] pillar_1.9.0 affyio_1.72.0 -## [53] BiocManager_1.30.22 MatrixGenerics_1.14.0 -## [55] foreach_1.5.2 MALDIquant_1.22.2 -## [57] ncdf4_1.22 generics_0.1.3 -## [59] RCurl_1.98-1.14 ggplot2_3.5.1 -## [61] munsell_0.5.1 scales_1.3.0 -## [63] glue_1.7.0 lazyeval_0.2.2 -## [65] tools_4.3.3 mzID_1.40.0 -## [67] QFeatures_1.12.0 vsn_3.70.0 -## [69] fs_1.6.4 XML_3.99-0.16.1 -## [71] grid_4.3.3 impute_1.76.0 -## [73] MsCoreUtils_1.14.1 colorspace_2.1-0 -## [75] GenomeInfoDbData_1.2.11 PSMatch_1.6.0 -## [77] cli_3.6.2 textshaping_0.3.7 -## [79] fansi_1.0.6 S4Arrays_1.2.1 -## [81] dplyr_1.1.4 AnnotationFilter_1.26.0 -## [83] pcaMethods_1.94.0 gtable_0.3.5 -## [85] sass_0.4.9 digest_0.6.35 -## [87] SparseArray_1.2.4 htmlwidgets_1.6.4 -## [89] memoise_2.0.1 htmltools_0.5.8.1 -## [91] pkgdown_2.0.9.9000 lifecycle_1.0.4 -## [93] statmod_1.5.0 MASS_7.3-60.0.1

    +## [15] UCSC.utils_0.99.7 preprocessCore_1.61.0 +## [17] ragg_1.3.0 purrr_1.0.2 +## [19] xfun_0.43 MultiAssayExperiment_1.29.2 +## [21] zlibbioc_1.49.3 cachem_1.0.8 +## [23] GenomeInfoDb_1.39.14 jsonlite_1.8.8 +## [25] DelayedArray_0.29.9 BiocParallel_1.37.1 +## [27] parallel_4.4.0 cluster_2.1.6 +## [29] R6_2.5.1 bslib_0.7.0 +## [31] limma_3.59.10 GenomicRanges_1.55.4 +## [33] jquerylib_0.1.4 bookdown_0.39 +## [35] SummarizedExperiment_1.33.3 iterators_1.0.14 +## [37] knitr_1.46 IRanges_2.37.1 +## [39] Matrix_1.7-0 igraph_2.0.3 +## [41] tidyselect_1.2.1 abind_1.4-5 +## [43] yaml_2.3.8 doParallel_1.0.17 +## [45] codetools_0.2-20 affy_1.81.0 +## [47] lattice_0.22-6 tibble_3.2.1 +## [49] plyr_1.8.9 evaluate_0.23 +## [51] desc_1.4.3 pillar_1.9.0 +## [53] affyio_1.73.0 BiocManager_1.30.22 +## [55] MatrixGenerics_1.15.1 foreach_1.5.2 +## [57] MALDIquant_1.22.2 ncdf4_1.22 +## [59] generics_0.1.3 RCurl_1.98-1.14 +## [61] ggplot2_3.5.1 munsell_0.5.1 +## [63] scales_1.3.0 glue_1.7.0 +## [65] lazyeval_0.2.2 tools_4.4.0 +## [67] mzID_1.41.0 QFeatures_1.13.7 +## [69] vsn_3.71.1 fs_1.6.4 +## [71] XML_3.99-0.16.1 grid_4.4.0 +## [73] impute_1.77.0 tidyr_1.3.1 +## [75] MsCoreUtils_1.15.7 colorspace_2.1-0 +## [77] GenomeInfoDbData_1.2.12 PSMatch_1.7.2 +## [79] cli_3.6.2 textshaping_0.3.7 +## [81] fansi_1.0.6 S4Arrays_1.3.7 +## [83] dplyr_1.1.4 AnnotationFilter_1.27.0 +## [85] pcaMethods_1.95.0 gtable_0.3.5 +## [87] sass_0.4.9 digest_0.6.35 +## [89] SparseArray_1.3.7 htmlwidgets_1.6.4 +## [91] memoise_2.0.1 htmltools_0.5.8.1 +## [93] pkgdown_2.0.9.9000 lifecycle_1.0.4 +## [95] httr_1.4.7 statmod_1.5.0 +## [97] MASS_7.3-60.2

    References diff --git a/pkgdown.yml b/pkgdown.yml index 4eb89cb6..0b635e1a 100644 --- a/pkgdown.yml +++ b/pkgdown.yml @@ -7,5 +7,5 @@ articles: v03-MSnbase-centroiding: v03-MSnbase-centroiding.html v04-benchmarking: v04-benchmarking.html v05-MSnbase-development: v05-MSnbase-development.html -last_built: 2024-04-30T16:21Z +last_built: 2024-04-30T17:21Z diff --git a/reference/FeatComp-class.html b/reference/FeatComp-class.html index 57fd060c..e001f5a4 100644 --- a/reference/FeatComp-class.html +++ b/reference/FeatComp-class.html @@ -173,7 +173,7 @@

    See also

    Examples

    library("pRolocdata")
     #> 
    -#> This is pRolocdata version 1.40.0.
    +#> This is pRolocdata version 1.41.0.
     #> Use 'pRolocdata()' to list available data sets.
     data(tan2009r1)
     data(tan2009r2)
    diff --git a/reference/FeaturesOfInterest-class.html b/reference/FeaturesOfInterest-class.html
    index c8b0ed7a..09cfd7fc 100644
    --- a/reference/FeaturesOfInterest-class.html
    +++ b/reference/FeaturesOfInterest-class.html
    @@ -267,7 +267,7 @@ 

    Examples

    object = tan2009r1) x #> Traceable object of class "FeaturesOfInterest" -#> Created on Tue Apr 30 16:21:31 2024 +#> Created on Tue Apr 30 17:21:30 2024 #> Description: #> A traceable test set of features of interest #> 10 features of interest: @@ -283,7 +283,7 @@

    Examples

    fnames = featureNames(tan2009r1)[111:113]) y #> Object of class "FeaturesOfInterest" -#> Created on Tue Apr 30 16:21:31 2024 +#> Created on Tue Apr 30 17:21:30 2024 #> Description: #> Non-traceable features of interest #> 3 features of interest: @@ -301,7 +301,7 @@

    Examples

    FeaturesOfInterest(description = "This work, but not traceable", fnames = c("A", "Z", featureNames(tan2009r1))) #> Object of class "FeaturesOfInterest" -#> Created on Tue Apr 30 16:21:31 2024 +#> Created on Tue Apr 30 17:21:30 2024 #> Description: #> This work, but not traceable #> 890 features of interest: @@ -324,14 +324,14 @@

    Examples

    #> A collection of 1 features of interest. xx[[1]] #> Traceable object of class "FeaturesOfInterest" -#> Created on Tue Apr 30 16:21:31 2024 +#> Created on Tue Apr 30 17:21:30 2024 #> Description: #> A traceable test set of features of interest #> 10 features of interest: #> P20353, P53501 ... Q9VCK0, Q9VIU7 xx[["A"]] #> Traceable object of class "FeaturesOfInterest" -#> Created on Tue Apr 30 16:21:31 2024 +#> Created on Tue Apr 30 17:21:30 2024 #> Description: #> A traceable test set of features of interest #> 10 features of interest: @@ -345,7 +345,7 @@

    Examples

    foi(xx) #> $A #> Traceable object of class "FeaturesOfInterest" -#> Created on Tue Apr 30 16:21:31 2024 +#> Created on Tue Apr 30 17:21:30 2024 #> Description: #> A traceable test set of features of interest #> 10 features of interest: @@ -353,7 +353,7 @@

    Examples

    #> #> $B #> Object of class "FeaturesOfInterest" -#> Created on Tue Apr 30 16:21:31 2024 +#> Created on Tue Apr 30 17:21:30 2024 #> Description: #> Non-traceable features of interest #> 3 features of interest: diff --git a/reference/MSnExp-class.html b/reference/MSnExp-class.html index 9797a633..3250a4e0 100644 --- a/reference/MSnExp-class.html +++ b/reference/MSnExp-class.html @@ -462,7 +462,7 @@

    Examples

    #> Number of spectra: 5 #> MSn retention times: 25:01 - 25:02 minutes #> - - - Processing information - - - -#> Data loaded: Tue Apr 30 16:21:36 2024 +#> Data loaded: Tue Apr 30 17:21:36 2024 #> MSnbase version: 2.29.5 #> - - - Meta data - - - #> phenoData diff --git a/reference/MSnSet-class.html b/reference/MSnSet-class.html index 265ba1a2..4dfb9700 100644 --- a/reference/MSnSet-class.html +++ b/reference/MSnSet-class.html @@ -678,7 +678,7 @@

    Examples

    #> - - - Processing information - - - #> Data loaded: Wed May 11 18:54:39 2011 #> iTRAQ4 quantification by trapezoidation: Wed Apr 1 21:41:53 2015 -#> Subset [55,4][6,4] Tue Apr 30 16:21:36 2024 +#> Subset [55,4][6,4] Tue Apr 30 17:21:37 2024 #> MSnbase version: 1.1.22 as(msnset, "ExpressionSet") diff --git a/reference/MSpectra.html b/reference/MSpectra.html index f244dcca..4705ce91 100644 --- a/reference/MSpectra.html +++ b/reference/MSpectra.html @@ -511,7 +511,7 @@

    Examples

    ## Evaluate the written output. The ID of each spectrum (defined in the ## "id" metadata column) is exported as field "ID". readLines(tmpf) -#> [1] "COM=Experimentexported by MSnbase on Tue Apr 30 16:21:45 2024" +#> [1] "COM=Experimentexported by MSnbase on Tue Apr 30 17:21:44 2024" #> [2] "BEGIN IONS" #> [3] "SCANS=NA" #> [4] "TITLE=msLevel 1; retentionTime ; scanNum NA" @@ -541,7 +541,7 @@

    Examples

    writeMgfData(spl, tmpf) readLines(tmpf) -#> [1] "COM=Experimentexported by MSnbase on Tue Apr 30 16:21:45 2024" +#> [1] "COM=Experimentexported by MSnbase on Tue Apr 30 17:21:44 2024" #> [2] "BEGIN IONS" #> [3] "SCANS=NA" #> [4] "TITLE=msLevel 1; retentionTime ; scanNum NA" diff --git a/reference/OnDiskMSnExp-class.html b/reference/OnDiskMSnExp-class.html index da351a15..e44f9687 100644 --- a/reference/OnDiskMSnExp-class.html +++ b/reference/OnDiskMSnExp-class.html @@ -1117,8 +1117,8 @@

    Examples

    #> Number of spectra: 35 #> MSn retention times: 45:27 - 45:30 minutes #> - - - Processing information - - - -#> Data loaded [Tue Apr 30 16:21:52 2024] -#> Filter: select parent/children scans for 21945 [Tue Apr 30 16:21:53 2024] +#> Data loaded [Tue Apr 30 17:21:53 2024] +#> Filter: select parent/children scans for 21945 [Tue Apr 30 17:21:54 2024] #> MSnbase version: 2.29.5 #> - - - Meta data - - - #> phenoData @@ -1149,8 +1149,8 @@

    Examples

    #> Number of spectra: 3 #> MSn retention times: 45:27 - 45:27 minutes #> - - - Processing information - - - -#> Data loaded [Tue Apr 30 16:21:52 2024] -#> Filter: select parent/children scans for 21946 [Tue Apr 30 16:21:53 2024] +#> Data loaded [Tue Apr 30 17:21:53 2024] +#> Filter: select parent/children scans for 21946 [Tue Apr 30 17:21:54 2024] #> MSnbase version: 2.29.5 #> - - - Meta data - - - #> phenoData diff --git a/reference/Rplot004.png b/reference/Rplot004.png index f34bbcb7..0cab001a 100644 Binary files a/reference/Rplot004.png and b/reference/Rplot004.png differ diff --git a/reference/Rplot005.png b/reference/Rplot005.png index e041be51..92e266ef 100644 Binary files a/reference/Rplot005.png and b/reference/Rplot005.png differ diff --git a/reference/averageMSnSet-1.png b/reference/averageMSnSet-1.png index 0821b4c0..84186a25 100644 Binary files a/reference/averageMSnSet-1.png and b/reference/averageMSnSet-1.png differ diff --git a/reference/averageMSnSet.html b/reference/averageMSnSet.html index a8bd75ae..f8b9cf1e 100644 --- a/reference/averageMSnSet.html +++ b/reference/averageMSnSet.html @@ -205,7 +205,7 @@

    Examples

    #> Loading required package: cluster #> Loading required package: BiocParallel #> -#> This is pRoloc version 1.42.0 +#> This is pRoloc version 1.43.2 #> Visit https://lgatto.github.io/pRoloc/ to get started. setStockcol(paste0(getStockcol(), "AA")) plot2D(avg, cex = 7.7 * disp) diff --git a/reference/bin-methods.html b/reference/bin-methods.html index af6a5fc0..bf2d7516 100644 --- a/reference/bin-methods.html +++ b/reference/bin-methods.html @@ -133,7 +133,7 @@

    Examples

    #> - - - Processing information - - - #> Data loaded: Wed May 11 18:54:39 2011 #> Updated from version 0.3.0 to 0.3.1 [Fri Jul 8 20:23:25 2016] -#> Spectra binned: Tue Apr 30 16:22:02 2024 +#> Spectra binned: Tue Apr 30 17:22:04 2024 #> MSnbase version: 1.1.22
    diff --git a/reference/clean-methods.html b/reference/clean-methods.html index e1070186..0124eb10 100644 --- a/reference/clean-methods.html +++ b/reference/clean-methods.html @@ -161,7 +161,7 @@

    Examples

    #> - - - Processing information - - - #> Data loaded: Wed May 11 18:54:39 2011 #> Updated from version 0.3.0 to 0.3.1 [Fri Jul 8 20:23:25 2016] -#> Spectra cleaned: Tue Apr 30 16:22:14 2024 +#> Spectra cleaned: Tue Apr 30 17:22:15 2024 #> MSnbase version: 1.1.22 ## Create a simple Chromatogram object diff --git a/reference/estimateMzResolution-1.png b/reference/estimateMzResolution-1.png index d2a09634..38f63c29 100644 Binary files a/reference/estimateMzResolution-1.png and b/reference/estimateMzResolution-1.png differ diff --git a/reference/estimateMzScattering-1.png b/reference/estimateMzScattering-1.png index 23f8920a..e113245a 100644 Binary files a/reference/estimateMzScattering-1.png and b/reference/estimateMzScattering-1.png differ diff --git a/reference/extractPrecSpectra-methods.html b/reference/extractPrecSpectra-methods.html index d28c5806..2a90a9b3 100644 --- a/reference/extractPrecSpectra-methods.html +++ b/reference/extractPrecSpectra-methods.html @@ -111,8 +111,8 @@

    Examples

    #> 645.3741 645.3741 processingData(bb) #> - - - Processing information - - - -#> Data loaded: Tue Apr 30 16:22:31 2024 -#> 1 (2) precursors (spectra) extracted: Tue Apr 30 16:22:31 2024 +#> Data loaded: Tue Apr 30 17:22:32 2024 +#> 1 (2) precursors (spectra) extracted: Tue Apr 30 17:22:32 2024 #> MSnbase version: 2.29.5 diff --git a/reference/impute.html b/reference/impute.html index 100be640..f4257ab6 100644 --- a/reference/impute.html +++ b/reference/impute.html @@ -151,7 +151,7 @@

    Examples

    #> experimentData: use 'experimentData(object)' #> Annotation: #> - - - Processing information - - - -#> Data imputation using min Tue Apr 30 16:22:38 2024 +#> Data imputation using min Tue Apr 30 17:22:39 2024 #> MSnbase version: 1.15.6 if (require("imputeLCMD")) { @@ -198,7 +198,7 @@

    Examples

    #> experimentData: use 'experimentData(object)' #> Annotation: #> - - - Processing information - - - -#> Data imputation using MinDet Tue Apr 30 16:22:38 2024 +#> Data imputation using MinDet Tue Apr 30 17:22:39 2024 #> MSnbase version: 1.15.6 if (require("norm")) @@ -222,7 +222,7 @@

    Examples

    #> experimentData: use 'experimentData(object)' #> Annotation: #> - - - Processing information - - - -#> Data imputation using MLE Tue Apr 30 16:22:39 2024 +#> Data imputation using MLE Tue Apr 30 17:22:39 2024 #> MSnbase version: 1.15.6 impute(naset, "mixed", @@ -245,7 +245,7 @@

    Examples

    #> experimentData: use 'experimentData(object)' #> Annotation: #> - - - Processing information - - - -#> Data imputation using mixed Tue Apr 30 16:22:39 2024 +#> Data imputation using mixed Tue Apr 30 17:22:39 2024 #> MSnbase version: 1.15.6 diff --git a/reference/makeNaData.html b/reference/makeNaData.html index f4d1b1fd..9328c22d 100644 --- a/reference/makeNaData.html +++ b/reference/makeNaData.html @@ -159,7 +159,7 @@

    Examples

    #> Loaded on Thu Jul 16 22:53:08 2015. #> Normalised to sum of intensities. #> Added markers from 'mrk' marker vector. Thu Jul 16 22:53:08 2015 -#> Set 150 values to NA Tue Apr 30 16:22:42 2024 +#> Set 150 values to NA Tue Apr 30 17:22:43 2024 #> MSnbase version: 1.17.12 sum(is.na(dunkleyNA)) #> [1] 150 @@ -180,7 +180,7 @@

    Examples

    dunkleyNA <- makeNaData(dunkley2006, nNA = 150, exclude = 1:10) processingData(dunkleyNA) #> - - - Processing information - - - -#> Set 150 values to NA Tue Apr 30 16:22:42 2024 +#> Set 150 values to NA Tue Apr 30 17:22:43 2024 #> (excluding 10 features) #> MSnbase version: 1.17.12 table(fData(dunkleyNA)$nNA[1:10]) @@ -202,9 +202,9 @@

    Examples

    #> Loaded on Thu Jul 16 22:53:08 2015. #> Normalised to sum of intensities. #> Added markers from 'mrk' marker vector. Thu Jul 16 22:53:08 2015 -#> Subset [689,16][100,5] Tue Apr 30 16:22:42 2024 +#> Subset [689,16][100,5] Tue Apr 30 17:22:43 2024 #> Set (1,2,3,4,5) NAs in (10,10,10,10,10) rows, -#> respectively Tue Apr 30 16:22:42 2024 +#> respectively Tue Apr 30 17:22:43 2024 #> MSnbase version: 1.17.12 (res <- table(fData(x)$nNA)) #> @@ -223,9 +223,9 @@

    Examples

    #> Loaded on Thu Jul 16 22:53:08 2015. #> Normalised to sum of intensities. #> Added markers from 'mrk' marker vector. Thu Jul 16 22:53:08 2015 -#> Subset [689,16][100,10] Tue Apr 30 16:22:42 2024 +#> Subset [689,16][100,10] Tue Apr 30 17:22:43 2024 #> Set (3,8,1,4) NAs in (5,12,11,8) rows, -#> respectively Tue Apr 30 16:22:42 2024 +#> respectively Tue Apr 30 17:22:43 2024 #> MSnbase version: 1.17.12 (res2 <- table(fData(x2)$nNA)) #> @@ -244,9 +244,9 @@

    Examples

    #> Loaded on Thu Jul 16 22:53:08 2015. #> Normalised to sum of intensities. #> Added markers from 'mrk' marker vector. Thu Jul 16 22:53:08 2015 -#> Subset [689,16][100,10] Tue Apr 30 16:22:42 2024 +#> Subset [689,16][100,10] Tue Apr 30 17:22:43 2024 #> Set (3,8,1,3) NAs in (5,12,11,8) rows, -#> respectively Tue Apr 30 16:22:42 2024 +#> respectively Tue Apr 30 17:22:43 2024 #> MSnbase version: 1.17.12 (res3 <- table(fData(x3)$nNA)) #> diff --git a/reference/missing-data-3.png b/reference/missing-data-3.png index f7fc4eec..fd9fbd69 100644 Binary files a/reference/missing-data-3.png and b/reference/missing-data-3.png differ diff --git a/reference/normToReference.html b/reference/normToReference.html index 44004a82..808dc562 100644 --- a/reference/normToReference.html +++ b/reference/normToReference.html @@ -170,7 +170,7 @@

    Examples

    #> - - - Processing information - - - #> Data loaded: Wed May 11 18:54:39 2011 #> iTRAQ4 quantification by trapezoidation: Wed Apr 1 21:41:53 2015 -#> Combined 55 features into 40 using mean: Tue Apr 30 16:22:49 2024 +#> Combined 55 features into 40 using mean: Tue Apr 30 17:22:50 2024 #> MSnbase version: 2.29.5 # use a user-given reference @@ -196,7 +196,7 @@

    Examples

    #> - - - Processing information - - - #> Data loaded: Wed May 11 18:54:39 2011 #> iTRAQ4 quantification by trapezoidation: Wed Apr 1 21:41:53 2015 -#> Combined 55 features into 40 using mean: Tue Apr 30 16:22:49 2024 +#> Combined 55 features into 40 using mean: Tue Apr 30 17:22:50 2024 #> MSnbase version: 2.29.5 diff --git a/reference/normalise-methods.html b/reference/normalise-methods.html index a4b7d9e8..b3ee7b4d 100644 --- a/reference/normalise-methods.html +++ b/reference/normalise-methods.html @@ -206,7 +206,7 @@

    Examples

    #> - - - Processing information - - - #> Data loaded: Wed May 11 18:54:39 2011 #> iTRAQ4 quantification by trapezoidation: Wed Apr 1 21:41:53 2015 -#> Normalised (quantiles): Tue Apr 30 16:22:50 2024 +#> Normalised (quantiles): Tue Apr 30 17:22:50 2024 #> MSnbase version: 1.1.22 diff --git a/reference/pickPeaks-method.html b/reference/pickPeaks-method.html index 8f1a8ec6..2cbca330 100644 --- a/reference/pickPeaks-method.html +++ b/reference/pickPeaks-method.html @@ -202,11 +202,11 @@

    Examples

    #> - - - Processing information - - - #> Data loaded: Wed May 11 18:54:39 2011 #> Updated from version 0.3.0 to 0.3.1 [Fri Jul 8 20:23:25 2016] -#> peak picking: MAD noise estimation and none centroid m/z refinement on spectra of MS level(s)2 [Tue Apr 30 16:22:51 2024] -#> peak picking: SuperSmoother noise estimation and kNeighbors centroid m/z refinement on spectra of MS level(s)2 [Tue Apr 30 16:22:51 2024] -#> peak picking: MAD noise estimation and kNeighbours centroid m/z refinement on spectra of MS level(s)2 [Tue Apr 30 16:22:51 2024] -#> peak picking: SuperSmoother noise estimation and descendPeak centroid m/z refinement on spectra of MS level(s)2 [Tue Apr 30 16:22:51 2024] -#> Spectra centroided: Tue Apr 30 16:22:51 2024 +#> peak picking: MAD noise estimation and none centroid m/z refinement on spectra of MS level(s)2 [Tue Apr 30 17:22:51 2024] +#> peak picking: SuperSmoother noise estimation and kNeighbors centroid m/z refinement on spectra of MS level(s)2 [Tue Apr 30 17:22:51 2024] +#> peak picking: MAD noise estimation and kNeighbours centroid m/z refinement on spectra of MS level(s)2 [Tue Apr 30 17:22:51 2024] +#> peak picking: SuperSmoother noise estimation and descendPeak centroid m/z refinement on spectra of MS level(s)2 [Tue Apr 30 17:22:51 2024] +#> Spectra centroided: Tue Apr 30 17:22:51 2024 #> MSnbase version: 1.1.22 diff --git a/reference/plot-methods-4.png b/reference/plot-methods-4.png index 04d96c62..3853afef 100644 Binary files a/reference/plot-methods-4.png and b/reference/plot-methods-4.png differ diff --git a/reference/plot-methods-5.png b/reference/plot-methods-5.png index 647c4c0e..fc6c585c 100644 Binary files a/reference/plot-methods-5.png and b/reference/plot-methods-5.png differ diff --git a/reference/purityCorrect-methods.html b/reference/purityCorrect-methods.html index d455d282..5d9c9858 100644 --- a/reference/purityCorrect-methods.html +++ b/reference/purityCorrect-methods.html @@ -198,7 +198,7 @@

    Examples

    #> - - - Processing information - - - #> Data loaded: Wed May 11 18:54:39 2011 #> iTRAQ4 quantification by trapezoidation: Wed Apr 1 21:41:53 2015 -#> Purity corrected: Tue Apr 30 16:23:00 2024 +#> Purity corrected: Tue Apr 30 17:23:00 2024 #> MSnbase version: 1.1.22 ## default impurity matrix for iTRAQ 8-plex diff --git a/reference/quantify-methods.html b/reference/quantify-methods.html index ed0af747..f6d1d2d7 100644 --- a/reference/quantify-methods.html +++ b/reference/quantify-methods.html @@ -284,7 +284,7 @@

    Examples

    #> - - - Processing information - - - #> Data loaded: Wed May 11 18:54:39 2011 #> Updated from version 0.3.0 to 0.3.1 [Fri Jul 8 20:23:25 2016] -#> iTRAQ4 quantification by trapezoidation: Tue Apr 30 16:23:01 2024 +#> iTRAQ4 quantification by trapezoidation: Tue Apr 30 17:23:01 2024 #> MSnbase version: 1.1.22 ## specifying a custom parallel framework @@ -321,11 +321,11 @@

    Examples

    si <- quantify(msexp, method = "SIn") processingData(si) #> - - - Processing information - - - -#> Data loaded: Tue Apr 30 16:23:02 2024 -#> Filtered 2 unidentified peptides out [Tue Apr 30 16:23:02 2024] -#> Quantitation by total ion current [Tue Apr 30 16:23:02 2024] -#> Combined 3 features into 3 using sum: Tue Apr 30 16:23:02 2024 -#> Quantification by SIn [Tue Apr 30 16:23:02 2024] +#> Data loaded: Tue Apr 30 17:23:02 2024 +#> Filtered 2 unidentified peptides out [Tue Apr 30 17:23:02 2024] +#> Quantitation by total ion current [Tue Apr 30 17:23:02 2024] +#> Combined 3 features into 3 using sum: Tue Apr 30 17:23:02 2024 +#> Quantification by SIn [Tue Apr 30 17:23:02 2024] #> MSnbase version: 2.29.5 exprs(si) #> dummyiTRAQ.mzXML @@ -336,12 +336,12 @@

    Examples

    saf <- quantify(msexp, method = "NSAF") processingData(saf) #> - - - Processing information - - - -#> Data loaded: Tue Apr 30 16:23:02 2024 -#> Filtered 2 unidentified peptides out [Tue Apr 30 16:23:02 2024] -#> Filtered 0 unidentified peptides out [Tue Apr 30 16:23:02 2024] -#> Quantitation by count [Tue Apr 30 16:23:02 2024] -#> Combined 3 features into 3 using user-defined function: Tue Apr 30 16:23:02 2024 -#> Quantification by NSAF [Tue Apr 30 16:23:02 2024] +#> Data loaded: Tue Apr 30 17:23:02 2024 +#> Filtered 2 unidentified peptides out [Tue Apr 30 17:23:02 2024] +#> Filtered 0 unidentified peptides out [Tue Apr 30 17:23:02 2024] +#> Quantitation by count [Tue Apr 30 17:23:02 2024] +#> Combined 3 features into 3 using user-defined function: Tue Apr 30 17:23:02 2024 +#> Quantification by NSAF [Tue Apr 30 17:23:02 2024] #> MSnbase version: 2.29.5 exprs(saf) #> dummyiTRAQ.mzXML diff --git a/reference/readMSData.html b/reference/readMSData.html index 9f77e874..2587529e 100644 --- a/reference/readMSData.html +++ b/reference/readMSData.html @@ -193,7 +193,7 @@

    Examples

    #> Number of spectra: 5 #> MSn retention times: 25:01 - 25:02 minutes #> - - - Processing information - - - -#> Data loaded: Tue Apr 30 16:23:04 2024 +#> Data loaded: Tue Apr 30 17:23:03 2024 #> MSnbase version: 2.29.5 #> - - - Meta data - - - #> phenoData @@ -217,7 +217,7 @@

    Examples

    #> Number of spectra: 5 #> MSn retention times: 25:01 - 25:02 minutes #> - - - Processing information - - - -#> Data loaded [Tue Apr 30 16:23:05 2024] +#> Data loaded [Tue Apr 30 17:23:04 2024] #> MSnbase version: 2.29.5 #> - - - Meta data - - - #> phenoData diff --git a/reference/readMgfData.html b/reference/readMgfData.html index b4b89909..5c3aba8e 100644 --- a/reference/readMgfData.html +++ b/reference/readMgfData.html @@ -168,7 +168,7 @@

    Examples

    #> Number of spectra: 3 #> MSn retention times: 17:08 - 18:47 minutes #> - - - Processing information - - - -#> Data loaded: Tue Apr 30 16:23:06 2024 +#> Data loaded: Tue Apr 30 17:23:06 2024 #> MSnbase version: 2.29.5 #> - - - Meta data - - - #> phenoData diff --git a/reference/readMzTabData_v0.9.html b/reference/readMzTabData_v0.9.html index c7c29ea0..0d375009 100644 --- a/reference/readMzTabData_v0.9.html +++ b/reference/readMzTabData_v0.9.html @@ -142,7 +142,7 @@

    Examples

    #> experimentData: use 'experimentData(object)' #> Annotation: #> - - - Processing information - - - -#> mzTab read: Tue Apr 30 16:23:13 2024 +#> mzTab read: Tue Apr 30 17:23:13 2024 #> MSnbase version: 2.29.5 pep <- readMzTabData_v0.9(testfile, "PEP") @@ -165,7 +165,7 @@

    Examples

    #> experimentData: use 'experimentData(object)' #> Annotation: #> - - - Processing information - - - -#> mzTab read: Tue Apr 30 16:23:14 2024 +#> mzTab read: Tue Apr 30 17:23:14 2024 #> MSnbase version: 2.29.5 diff --git a/reference/removePeaks-methods.html b/reference/removePeaks-methods.html index 49387086..5c5e5049 100644 --- a/reference/removePeaks-methods.html +++ b/reference/removePeaks-methods.html @@ -173,7 +173,7 @@

    Examples

    #> - - - Processing information - - - #> Data loaded: Wed May 11 18:54:39 2011 #> Updated from version 0.3.0 to 0.3.1 [Fri Jul 8 20:23:25 2016] -#> Curves <= 250000 set to '0': Tue Apr 30 16:23:18 2024 +#> Curves <= 250000 set to '0': Tue Apr 30 17:23:18 2024 #> MSnbase version: 1.1.22 ## difference between centroided and profile peaks diff --git a/reference/smooth-methods.html b/reference/smooth-methods.html index bdffd506..93718ff7 100644 --- a/reference/smooth-methods.html +++ b/reference/smooth-methods.html @@ -170,7 +170,7 @@

    Examples

    #> - - - Processing information - - - #> Data loaded: Wed May 11 18:54:39 2011 #> Updated from version 0.3.0 to 0.3.1 [Fri Jul 8 20:23:25 2016] -#> Spectra smoothed (MovingAverage): Tue Apr 30 16:23:20 2024 +#> Spectra smoothed (MovingAverage): Tue Apr 30 17:23:20 2024 #> MSnbase version: 1.1.22