-
Notifications
You must be signed in to change notification settings - Fork 0
/
前馈神经网络.html
458 lines (420 loc) · 29.4 KB
/
前馈神经网络.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
<!DOCTYPE html>
<html lang="" xml:lang="">
<head>
<meta charset="utf-8" />
<meta http-equiv="X-UA-Compatible" content="IE=edge" />
<title>21 前馈神经网络 | 机器学习白板系列</title>
<meta name="description" content="这是用R的bookdown功能制作中文图书的模板,输出格式为bookdown::gitbook和bookdown::pdf_book." />
<meta name="generator" content="bookdown 0.26 and GitBook 2.6.7" />
<meta property="og:title" content="21 前馈神经网络 | 机器学习白板系列" />
<meta property="og:type" content="book" />
<meta property="og:description" content="这是用R的bookdown功能制作中文图书的模板,输出格式为bookdown::gitbook和bookdown::pdf_book." />
<meta name="twitter:card" content="summary" />
<meta name="twitter:title" content="21 前馈神经网络 | 机器学习白板系列" />
<meta name="twitter:description" content="这是用R的bookdown功能制作中文图书的模板,输出格式为bookdown::gitbook和bookdown::pdf_book." />
<meta name="author" content="庄闪闪" />
<meta name="viewport" content="width=device-width, initial-scale=1" />
<meta name="apple-mobile-web-app-capable" content="yes" />
<meta name="apple-mobile-web-app-status-bar-style" content="black" />
<link rel="prev" href="谱聚类.html"/>
<link rel="next" href="配分函数.html"/>
<script src="libs/jquery-3.6.0/jquery-3.6.0.min.js"></script>
<script src="https://cdn.jsdelivr.net/npm/fuse.js@6.4.6/dist/fuse.min.js"></script>
<link href="libs/gitbook-2.6.7/css/style.css" rel="stylesheet" />
<link href="libs/gitbook-2.6.7/css/plugin-table.css" rel="stylesheet" />
<link href="libs/gitbook-2.6.7/css/plugin-bookdown.css" rel="stylesheet" />
<link href="libs/gitbook-2.6.7/css/plugin-highlight.css" rel="stylesheet" />
<link href="libs/gitbook-2.6.7/css/plugin-search.css" rel="stylesheet" />
<link href="libs/gitbook-2.6.7/css/plugin-fontsettings.css" rel="stylesheet" />
<link href="libs/gitbook-2.6.7/css/plugin-clipboard.css" rel="stylesheet" />
<link href="libs/anchor-sections-1.1.0/anchor-sections.css" rel="stylesheet" />
<link href="libs/anchor-sections-1.1.0/anchor-sections-hash.css" rel="stylesheet" />
<script src="libs/anchor-sections-1.1.0/anchor-sections.js"></script>
<script type="text/x-mathjax-config">
MathJax.Hub.Config({
jax: ["input/TeX","output/SVG"],
extensions: ["tex2jax.js","MathMenu.js","MathZoom.js"],
TeX: {
extensions: ["AMSmath.js","AMSsymbols.js","noErrors.js","noUndefined.js"]
}
});
</script>
<script type="text/javascript"
src="../../../MathJax/MathJax.js">
</script>
<style type="text/css">
pre > code.sourceCode { white-space: pre; position: relative; }
pre > code.sourceCode > span { display: inline-block; line-height: 1.25; }
pre > code.sourceCode > span:empty { height: 1.2em; }
.sourceCode { overflow: visible; }
code.sourceCode > span { color: inherit; text-decoration: inherit; }
pre.sourceCode { margin: 0; }
@media screen {
div.sourceCode { overflow: auto; }
}
@media print {
pre > code.sourceCode { white-space: pre-wrap; }
pre > code.sourceCode > span { text-indent: -5em; padding-left: 5em; }
}
pre.numberSource code
{ counter-reset: source-line 0; }
pre.numberSource code > span
{ position: relative; left: -4em; counter-increment: source-line; }
pre.numberSource code > span > a:first-child::before
{ content: counter(source-line);
position: relative; left: -1em; text-align: right; vertical-align: baseline;
border: none; display: inline-block;
-webkit-touch-callout: none; -webkit-user-select: none;
-khtml-user-select: none; -moz-user-select: none;
-ms-user-select: none; user-select: none;
padding: 0 4px; width: 4em;
color: #aaaaaa;
}
pre.numberSource { margin-left: 3em; border-left: 1px solid #aaaaaa; padding-left: 4px; }
div.sourceCode
{ }
@media screen {
pre > code.sourceCode > span > a:first-child::before { text-decoration: underline; }
}
code span.al { color: #ff0000; font-weight: bold; } /* Alert */
code span.an { color: #60a0b0; font-weight: bold; font-style: italic; } /* Annotation */
code span.at { color: #7d9029; } /* Attribute */
code span.bn { color: #40a070; } /* BaseN */
code span.bu { } /* BuiltIn */
code span.cf { color: #007020; font-weight: bold; } /* ControlFlow */
code span.ch { color: #4070a0; } /* Char */
code span.cn { color: #880000; } /* Constant */
code span.co { color: #60a0b0; font-style: italic; } /* Comment */
code span.cv { color: #60a0b0; font-weight: bold; font-style: italic; } /* CommentVar */
code span.do { color: #ba2121; font-style: italic; } /* Documentation */
code span.dt { color: #902000; } /* DataType */
code span.dv { color: #40a070; } /* DecVal */
code span.er { color: #ff0000; font-weight: bold; } /* Error */
code span.ex { } /* Extension */
code span.fl { color: #40a070; } /* Float */
code span.fu { color: #06287e; } /* Function */
code span.im { } /* Import */
code span.in { color: #60a0b0; font-weight: bold; font-style: italic; } /* Information */
code span.kw { color: #007020; font-weight: bold; } /* Keyword */
code span.op { color: #666666; } /* Operator */
code span.ot { color: #007020; } /* Other */
code span.pp { color: #bc7a00; } /* Preprocessor */
code span.sc { color: #4070a0; } /* SpecialChar */
code span.ss { color: #bb6688; } /* SpecialString */
code span.st { color: #4070a0; } /* String */
code span.va { color: #19177c; } /* Variable */
code span.vs { color: #4070a0; } /* VerbatimString */
code span.wa { color: #60a0b0; font-weight: bold; font-style: italic; } /* Warning */
</style>
</head>
<body>
<div class="book without-animation with-summary font-size-2 font-family-1" data-basepath=".">
<div class="book-summary">
<nav role="navigation">
<ul class="summary">
<li class="chapter" data-level="" data-path="index.html"><a href="index.html"><i class="fa fa-check"></i>简介</a></li>
<li class="chapter" data-level="1" data-path="introduction.html"><a href="introduction.html"><i class="fa fa-check"></i><b>1</b> Introduction</a>
<ul>
<li class="chapter" data-level="1.1" data-path="introduction.html"><a href="introduction.html#频率派的观点"><i class="fa fa-check"></i><b>1.1</b> 频率派的观点</a></li>
<li class="chapter" data-level="1.2" data-path="introduction.html"><a href="introduction.html#贝叶斯派的观点"><i class="fa fa-check"></i><b>1.2</b> 贝叶斯派的观点</a></li>
<li class="chapter" data-level="1.3" data-path="introduction.html"><a href="introduction.html#小结"><i class="fa fa-check"></i><b>1.3</b> 小结</a></li>
</ul></li>
<li class="chapter" data-level="2" data-path="mathbasics.html"><a href="mathbasics.html"><i class="fa fa-check"></i><b>2</b> MathBasics</a>
<ul>
<li class="chapter" data-level="2.1" data-path="mathbasics.html"><a href="mathbasics.html#高斯分布"><i class="fa fa-check"></i><b>2.1</b> 高斯分布</a>
<ul>
<li class="chapter" data-level="2.1.1" data-path="mathbasics.html"><a href="mathbasics.html#一维情况-mle"><i class="fa fa-check"></i><b>2.1.1</b> 一维情况 MLE</a></li>
<li class="chapter" data-level="2.1.2" data-path="mathbasics.html"><a href="mathbasics.html#多维情况"><i class="fa fa-check"></i><b>2.1.2</b> 多维情况</a></li>
</ul></li>
</ul></li>
<li class="chapter" data-level="3" data-path="线性回归.html"><a href="线性回归.html"><i class="fa fa-check"></i><b>3</b> 线性回归</a>
<ul>
<li class="chapter" data-level="3.1" data-path="线性回归.html"><a href="线性回归.html#最小二乘法"><i class="fa fa-check"></i><b>3.1</b> 最小二乘法</a></li>
<li class="chapter" data-level="3.2" data-path="线性回归.html"><a href="线性回归.html#噪声为高斯分布的-mle"><i class="fa fa-check"></i><b>3.2</b> 噪声为高斯分布的 MLE</a></li>
<li class="chapter" data-level="3.3" data-path="线性回归.html"><a href="线性回归.html#权重先验也为高斯分布的-map"><i class="fa fa-check"></i><b>3.3</b> 权重先验也为高斯分布的 MAP</a></li>
<li class="chapter" data-level="3.4" data-path="线性回归.html"><a href="线性回归.html#正则化"><i class="fa fa-check"></i><b>3.4</b> 正则化</a>
<ul>
<li class="chapter" data-level="3.4.1" data-path="线性回归.html"><a href="线性回归.html#l1-lasso"><i class="fa fa-check"></i><b>3.4.1</b> L1 Lasso</a></li>
<li class="chapter" data-level="3.4.2" data-path="线性回归.html"><a href="线性回归.html#l2-ridge"><i class="fa fa-check"></i><b>3.4.2</b> L2 Ridge</a></li>
</ul></li>
<li class="chapter" data-level="3.5" data-path="线性回归.html"><a href="线性回归.html#小结-1"><i class="fa fa-check"></i><b>3.5</b> 小结</a></li>
</ul></li>
<li class="chapter" data-level="4" data-path="线性分类.html"><a href="线性分类.html"><i class="fa fa-check"></i><b>4</b> 线性分类</a>
<ul>
<li class="chapter" data-level="4.1" data-path="线性分类.html"><a href="线性分类.html#两分类-硬分类-感知机算法"><i class="fa fa-check"></i><b>4.1</b> 两分类-硬分类-感知机算法</a></li>
<li class="chapter" data-level="4.2" data-path="线性分类.html"><a href="线性分类.html#两分类-硬分类-线性判别分析-lda"><i class="fa fa-check"></i><b>4.2</b> 两分类-硬分类-线性判别分析 LDA</a></li>
<li class="chapter" data-level="4.3" data-path="线性分类.html"><a href="线性分类.html#两分类-软分类-概率判别模型-logistic-回归"><i class="fa fa-check"></i><b>4.3</b> 两分类-软分类-概率判别模型-Logistic 回归</a></li>
<li class="chapter" data-level="4.4" data-path="线性分类.html"><a href="线性分类.html#两分类-软分类-概率生成模型-高斯判别分析-gda"><i class="fa fa-check"></i><b>4.4</b> 两分类-软分类-概率生成模型-高斯判别分析 GDA</a></li>
<li class="chapter" data-level="4.5" data-path="线性分类.html"><a href="线性分类.html#两分类-软分类-概率生成模型-朴素贝叶斯"><i class="fa fa-check"></i><b>4.5</b> 两分类-软分类-概率生成模型-朴素贝叶斯</a></li>
<li class="chapter" data-level="4.6" data-path="线性分类.html"><a href="线性分类.html#小结-2"><i class="fa fa-check"></i><b>4.6</b> 小结</a></li>
</ul></li>
<li class="chapter" data-level="5" data-path="降维.html"><a href="降维.html"><i class="fa fa-check"></i><b>5</b> 降维</a>
<ul>
<li class="chapter" data-level="5.1" data-path="降维.html"><a href="降维.html#线性降维-主成分分析-pca"><i class="fa fa-check"></i><b>5.1</b> 线性降维-主成分分析 PCA</a>
<ul>
<li class="chapter" data-level="5.1.1" data-path="降维.html"><a href="降维.html#损失函数"><i class="fa fa-check"></i><b>5.1.1</b> 损失函数</a></li>
<li class="chapter" data-level="5.1.2" data-path="降维.html"><a href="降维.html#svd-与-pcoa"><i class="fa fa-check"></i><b>5.1.2</b> SVD 与 PCoA</a></li>
<li class="chapter" data-level="5.1.3" data-path="降维.html"><a href="降维.html#p-pca"><i class="fa fa-check"></i><b>5.1.3</b> p-PCA</a></li>
</ul></li>
<li class="chapter" data-level="5.2" data-path="降维.html"><a href="降维.html#小结-3"><i class="fa fa-check"></i><b>5.2</b> 小结</a></li>
</ul></li>
<li class="chapter" data-level="6" data-path="支撑向量机.html"><a href="支撑向量机.html"><i class="fa fa-check"></i><b>6</b> 支撑向量机</a>
<ul>
<li class="chapter" data-level="6.1" data-path="支撑向量机.html"><a href="支撑向量机.html#约束优化问题"><i class="fa fa-check"></i><b>6.1</b> 约束优化问题</a></li>
<li class="chapter" data-level="6.2" data-path="支撑向量机.html"><a href="支撑向量机.html#hard-margin-svm"><i class="fa fa-check"></i><b>6.2</b> Hard-margin SVM</a></li>
<li class="chapter" data-level="6.3" data-path="支撑向量机.html"><a href="支撑向量机.html#soft-margin-svm"><i class="fa fa-check"></i><b>6.3</b> Soft-margin SVM</a></li>
<li class="chapter" data-level="6.4" data-path="支撑向量机.html"><a href="支撑向量机.html#kernel-method"><i class="fa fa-check"></i><b>6.4</b> Kernel Method</a></li>
<li class="chapter" data-level="6.5" data-path="支撑向量机.html"><a href="支撑向量机.html#小结-4"><i class="fa fa-check"></i><b>6.5</b> 小结</a></li>
</ul></li>
<li class="chapter" data-level="7" data-path="指数族分布.html"><a href="指数族分布.html"><i class="fa fa-check"></i><b>7</b> 指数族分布</a>
<ul>
<li class="chapter" data-level="7.1" data-path="指数族分布.html"><a href="指数族分布.html#一维高斯分布"><i class="fa fa-check"></i><b>7.1</b> 一维高斯分布</a></li>
<li class="chapter" data-level="7.2" data-path="指数族分布.html"><a href="指数族分布.html#充分统计量和对数配分函数的关系"><i class="fa fa-check"></i><b>7.2</b> 充分统计量和对数配分函数的关系</a></li>
<li class="chapter" data-level="7.3" data-path="指数族分布.html"><a href="指数族分布.html#充分统计量和极大似然估计"><i class="fa fa-check"></i><b>7.3</b> 充分统计量和极大似然估计</a></li>
<li class="chapter" data-level="7.4" data-path="指数族分布.html"><a href="指数族分布.html#最大熵"><i class="fa fa-check"></i><b>7.4</b> 最大熵</a></li>
</ul></li>
<li class="chapter" data-level="8" data-path="概率图模型.html"><a href="概率图模型.html"><i class="fa fa-check"></i><b>8</b> 概率图模型</a>
<ul>
<li class="chapter" data-level="8.1" data-path="概率图模型.html"><a href="概率图模型.html#有向图-贝叶斯网络"><i class="fa fa-check"></i><b>8.1</b> 有向图-贝叶斯网络</a></li>
<li class="chapter" data-level="8.2" data-path="概率图模型.html"><a href="概率图模型.html#无向图-马尔可夫网络马尔可夫随机场"><i class="fa fa-check"></i><b>8.2</b> 无向图-马尔可夫网络(马尔可夫随机场)</a></li>
<li class="chapter" data-level="8.3" data-path="概率图模型.html"><a href="概率图模型.html#两种图的转换-道德图"><i class="fa fa-check"></i><b>8.3</b> 两种图的转换-道德图</a></li>
<li class="chapter" data-level="8.4" data-path="概率图模型.html"><a href="概率图模型.html#更精细的分解-因子图"><i class="fa fa-check"></i><b>8.4</b> 更精细的分解-因子图</a></li>
<li class="chapter" data-level="8.5" data-path="概率图模型.html"><a href="概率图模型.html#推断"><i class="fa fa-check"></i><b>8.5</b> 推断</a>
<ul>
<li class="chapter" data-level="8.5.1" data-path="概率图模型.html"><a href="概率图模型.html#推断-变量消除ve"><i class="fa fa-check"></i><b>8.5.1</b> 推断-变量消除(VE)</a></li>
<li class="chapter" data-level="8.5.2" data-path="概率图模型.html"><a href="概率图模型.html#推断-信念传播bp"><i class="fa fa-check"></i><b>8.5.2</b> 推断-信念传播(BP)</a></li>
<li class="chapter" data-level="8.5.3" data-path="概率图模型.html"><a href="概率图模型.html#推断-max-product-算法"><i class="fa fa-check"></i><b>8.5.3</b> 推断-Max-Product 算法</a></li>
</ul></li>
</ul></li>
<li class="chapter" data-level="9" data-path="期望最大.html"><a href="期望最大.html"><i class="fa fa-check"></i><b>9</b> 期望最大</a>
<ul>
<li class="chapter" data-level="9.1" data-path="期望最大.html"><a href="期望最大.html#广义-em"><i class="fa fa-check"></i><b>9.1</b> 广义 EM</a></li>
<li class="chapter" data-level="9.2" data-path="期望最大.html"><a href="期望最大.html#em-的推广"><i class="fa fa-check"></i><b>9.2</b> EM 的推广</a></li>
</ul></li>
<li class="chapter" data-level="10" data-path="高斯混合模型.html"><a href="高斯混合模型.html"><i class="fa fa-check"></i><b>10</b> 高斯混合模型</a>
<ul>
<li class="chapter" data-level="10.1" data-path="高斯混合模型.html"><a href="高斯混合模型.html#极大似然估计"><i class="fa fa-check"></i><b>10.1</b> 极大似然估计</a></li>
<li class="chapter" data-level="10.2" data-path="高斯混合模型.html"><a href="高斯混合模型.html#em-求解-gmm"><i class="fa fa-check"></i><b>10.2</b> EM 求解 GMM</a></li>
</ul></li>
<li class="chapter" data-level="11" data-path="变分推断.html"><a href="变分推断.html"><i class="fa fa-check"></i><b>11</b> 变分推断</a>
<ul>
<li class="chapter" data-level="11.1" data-path="变分推断.html"><a href="变分推断.html#基于平均场假设的变分推断"><i class="fa fa-check"></i><b>11.1</b> 基于平均场假设的变分推断</a></li>
<li class="chapter" data-level="11.2" data-path="变分推断.html"><a href="变分推断.html#sgvi"><i class="fa fa-check"></i><b>11.2</b> SGVI</a></li>
</ul></li>
<li class="chapter" data-level="12" data-path="马尔可夫链蒙特卡洛.html"><a href="马尔可夫链蒙特卡洛.html"><i class="fa fa-check"></i><b>12</b> 马尔可夫链蒙特卡洛</a>
<ul>
<li class="chapter" data-level="12.1" data-path="马尔可夫链蒙特卡洛.html"><a href="马尔可夫链蒙特卡洛.html#蒙特卡洛方法"><i class="fa fa-check"></i><b>12.1</b> 蒙特卡洛方法</a></li>
<li class="chapter" data-level="12.2" data-path="马尔可夫链蒙特卡洛.html"><a href="马尔可夫链蒙特卡洛.html#mcmc"><i class="fa fa-check"></i><b>12.2</b> MCMC</a></li>
<li class="chapter" data-level="12.3" data-path="马尔可夫链蒙特卡洛.html"><a href="马尔可夫链蒙特卡洛.html#平稳分布"><i class="fa fa-check"></i><b>12.3</b> 平稳分布</a></li>
<li class="chapter" data-level="12.4" data-path="马尔可夫链蒙特卡洛.html"><a href="马尔可夫链蒙特卡洛.html#隐马尔可夫模型"><i class="fa fa-check"></i><b>12.4</b> 隐马尔可夫模型</a></li>
<li class="chapter" data-level="12.5" data-path="马尔可夫链蒙特卡洛.html"><a href="马尔可夫链蒙特卡洛.html#hmm"><i class="fa fa-check"></i><b>12.5</b> HMM</a>
<ul>
<li class="chapter" data-level="12.5.1" data-path="马尔可夫链蒙特卡洛.html"><a href="马尔可夫链蒙特卡洛.html#evaluation"><i class="fa fa-check"></i><b>12.5.1</b> Evaluation</a></li>
<li class="chapter" data-level="12.5.2" data-path="马尔可夫链蒙特卡洛.html"><a href="马尔可夫链蒙特卡洛.html#learning"><i class="fa fa-check"></i><b>12.5.2</b> Learning</a></li>
<li class="chapter" data-level="12.5.3" data-path="马尔可夫链蒙特卡洛.html"><a href="马尔可夫链蒙特卡洛.html#decoding"><i class="fa fa-check"></i><b>12.5.3</b> Decoding</a></li>
</ul></li>
<li class="chapter" data-level="12.6" data-path="马尔可夫链蒙特卡洛.html"><a href="马尔可夫链蒙特卡洛.html#小结-5"><i class="fa fa-check"></i><b>12.6</b> 小结</a></li>
</ul></li>
<li class="chapter" data-level="13" data-path="线性动态系统.html"><a href="线性动态系统.html"><i class="fa fa-check"></i><b>13</b> 线性动态系统</a></li>
<li class="chapter" data-level="14" data-path="粒子滤波.html"><a href="粒子滤波.html"><i class="fa fa-check"></i><b>14</b> 粒子滤波</a>
<ul>
<li class="chapter" data-level="14.1" data-path="粒子滤波.html"><a href="粒子滤波.html#sis"><i class="fa fa-check"></i><b>14.1</b> SIS</a></li>
</ul></li>
<li class="chapter" data-level="15" data-path="条件随机场.html"><a href="条件随机场.html"><i class="fa fa-check"></i><b>15</b> 条件随机场</a>
<ul>
<li class="chapter" data-level="15.1" data-path="条件随机场.html"><a href="条件随机场.html#crf-的-pdf"><i class="fa fa-check"></i><b>15.1</b> CRF 的 PDF</a></li>
<li class="chapter" data-level="15.2" data-path="条件随机场.html"><a href="条件随机场.html#边缘概率"><i class="fa fa-check"></i><b>15.2</b> 边缘概率</a></li>
<li class="chapter" data-level="15.3" data-path="条件随机场.html"><a href="条件随机场.html#参数估计"><i class="fa fa-check"></i><b>15.3</b> 参数估计</a></li>
<li class="chapter" data-level="15.4" data-path="条件随机场.html"><a href="条件随机场.html#译码"><i class="fa fa-check"></i><b>15.4</b> 译码</a></li>
</ul></li>
<li class="chapter" data-level="16" data-path="高斯网络.html"><a href="高斯网络.html"><i class="fa fa-check"></i><b>16</b> 高斯网络</a>
<ul>
<li class="chapter" data-level="16.1" data-path="高斯网络.html"><a href="高斯网络.html#高斯贝叶斯网络-gbn"><i class="fa fa-check"></i><b>16.1</b> 高斯贝叶斯网络 GBN</a></li>
<li class="chapter" data-level="16.2" data-path="高斯网络.html"><a href="高斯网络.html#高斯马尔可夫网络-gmn"><i class="fa fa-check"></i><b>16.2</b> 高斯马尔可夫网络 GMN</a></li>
</ul></li>
<li class="chapter" data-level="17" data-path="贝叶斯线性回归.html"><a href="贝叶斯线性回归.html"><i class="fa fa-check"></i><b>17</b> 贝叶斯线性回归</a>
<ul>
<li class="chapter" data-level="17.1" data-path="贝叶斯线性回归.html"><a href="贝叶斯线性回归.html#推断-1"><i class="fa fa-check"></i><b>17.1</b> 推断</a></li>
<li class="chapter" data-level="17.2" data-path="贝叶斯线性回归.html"><a href="贝叶斯线性回归.html#预测"><i class="fa fa-check"></i><b>17.2</b> 预测</a></li>
</ul></li>
<li class="chapter" data-level="18" data-path="高斯过程回归.html"><a href="高斯过程回归.html"><i class="fa fa-check"></i><b>18</b> 高斯过程回归</a>
<ul>
<li class="chapter" data-level="18.1" data-path="高斯过程回归.html"><a href="高斯过程回归.html#核贝叶斯线性回归"><i class="fa fa-check"></i><b>18.1</b> 核贝叶斯线性回归</a></li>
<li class="chapter" data-level="18.2" data-path="高斯过程回归.html"><a href="高斯过程回归.html#函数空间的观点"><i class="fa fa-check"></i><b>18.2</b> 函数空间的观点</a></li>
</ul></li>
<li class="chapter" data-level="19" data-path="受限玻尔兹曼机.html"><a href="受限玻尔兹曼机.html"><i class="fa fa-check"></i><b>19</b> 受限玻尔兹曼机</a>
<ul>
<li class="chapter" data-level="19.1" data-path="受限玻尔兹曼机.html"><a href="受限玻尔兹曼机.html#推断-2"><i class="fa fa-check"></i><b>19.1</b> 推断</a>
<ul>
<li class="chapter" data-level="19.1.1" data-path="受限玻尔兹曼机.html"><a href="受限玻尔兹曼机.html#phv"><i class="fa fa-check"></i><b>19.1.1</b> <span class="math inline">\(p(h|v)\)</span></a></li>
<li class="chapter" data-level="19.1.2" data-path="受限玻尔兹曼机.html"><a href="受限玻尔兹曼机.html#pv"><i class="fa fa-check"></i><b>19.1.2</b> <span class="math inline">\(p(v)\)</span></a></li>
</ul></li>
</ul></li>
<li class="chapter" data-level="20" data-path="谱聚类.html"><a href="谱聚类.html"><i class="fa fa-check"></i><b>20</b> 谱聚类</a></li>
<li class="chapter" data-level="21" data-path="前馈神经网络.html"><a href="前馈神经网络.html"><i class="fa fa-check"></i><b>21</b> 前馈神经网络</a>
<ul>
<li class="chapter" data-level="21.1" data-path="前馈神经网络.html"><a href="前馈神经网络.html#from-pla-to-dl"><i class="fa fa-check"></i><b>21.1</b> From PLA to DL</a></li>
<li class="chapter" data-level="21.2" data-path="前馈神经网络.html"><a href="前馈神经网络.html#非线性问题"><i class="fa fa-check"></i><b>21.2</b> 非线性问题</a></li>
</ul></li>
<li class="chapter" data-level="22" data-path="配分函数.html"><a href="配分函数.html"><i class="fa fa-check"></i><b>22</b> 配分函数</a>
<ul>
<li class="chapter" data-level="22.1" data-path="配分函数.html"><a href="配分函数.html#包含配分函数的-mle"><i class="fa fa-check"></i><b>22.1</b> 包含配分函数的 MLE</a></li>
<li class="chapter" data-level="22.2" data-path="配分函数.html"><a href="配分函数.html#对比散度-cd-learning"><i class="fa fa-check"></i><b>22.2</b> 对比散度-CD Learning</a></li>
<li class="chapter" data-level="22.3" data-path="配分函数.html"><a href="配分函数.html#rbm-的学习问题"><i class="fa fa-check"></i><b>22.3</b> RBM 的学习问题</a></li>
</ul></li>
<li class="chapter" data-level="23" data-path="近似推断.html"><a href="近似推断.html"><i class="fa fa-check"></i><b>23</b> 近似推断</a></li>
</ul>
</nav>
</div>
<div class="book-body">
<div class="body-inner">
<div class="book-header" role="navigation">
<h1>
<i class="fa fa-circle-o-notch fa-spin"></i><a href="./">机器学习白板系列</a>
</h1>
</div>
<div class="page-wrapper" tabindex="-1" role="main">
<div class="page-inner">
<section class="normal" id="section-">
<div id="前馈神经网络" class="section level1 hasAnchor" number="21">
<h1><span class="header-section-number">21</span> 前馈神经网络<a href="前馈神经网络.html#前馈神经网络" class="anchor-section" aria-label="Anchor link to header"></a></h1>
<p>机器学习我们已经知道可以分为两大流派:</p>
<ol style="list-style-type: decimal">
<li><p>频率派,这个流派的方法叫做统计学习,根据具体问题有下面的算法:</p>
<ol style="list-style-type: decimal">
<li><p>正则化,L1,L2 等</p></li>
<li><p>核化,如核支撑向量机</p></li>
<li><p>集成化,AdaBoost,RandomForest</p></li>
<li><p>层次化,神经网络,神经网络有各种不同的模型,有代表性的有:</p>
<ol style="list-style-type: decimal">
<li>多层感知机</li>
<li>Autoencoder</li>
<li>CNN</li>
<li>RNN</li>
</ol>
<p>这几种模型又叫做深度神经网络。</p></li>
</ol></li>
<li><p>贝叶斯派,这个流派的方法叫概率图模型,根据图特点分为:</p>
<ol style="list-style-type: decimal">
<li>有向图-贝叶斯网络,加入层次化后有深度有向网络,包括
<ol style="list-style-type: decimal">
<li>Sigmoid Belief Network</li>
<li>Variational Autoencoder</li>
<li>GAN</li>
</ol></li>
<li>无向图-马尔可夫网络,加入层次化后有深度玻尔兹曼机。</li>
<li>混合,加入层次化后有深度信念网络</li>
</ol>
<p>这几个加入层次化后的模型叫做深度生成网络。</p></li>
</ol>
<p>从广义来说,深度学习包括深度生成网络和深度神经网络。</p>
<div id="from-pla-to-dl" class="section level2 hasAnchor" number="21.1">
<h2><span class="header-section-number">21.1</span> From PLA to DL<a href="前馈神经网络.html#from-pla-to-dl" class="anchor-section" aria-label="Anchor link to header"></a></h2>
<ul>
<li>1958,PLA</li>
<li>1969,PLA 不能解决 XOR 等非线性数据</li>
<li>1981,MLP,多层感知机的出现解决了上面的问题</li>
<li>1986,BP 算法应用在 MLP 上,RNN</li>
<li>1989,CNN,Univeral Approximation Theorem,但是于此同时,由于深度和宽度的相对效率不知道,并且无法解决 BP 算法的梯度消失问题</li>
<li>1993,1995,SVM + kernel,AdaBoost,RandomForest,这些算法的发展,DL 逐渐没落</li>
<li>1997,LSTM</li>
<li>2006,基于 RBM 的 深度信念网络和深度自编码</li>
<li>2009,GPU的发展</li>
<li>2011,在语音方面的应用</li>
<li>2012,ImageNet</li>
<li>2013,VAE</li>
<li>2014,GAN</li>
<li>2016,AlphaGo</li>
<li>2018,GNN</li>
</ul>
<p>DL 不是一个新的东西,其近年来的大发展主要原因如下:</p>
<ol style="list-style-type: decimal">
<li>数据量变大</li>
<li>分布式计算的发展</li>
<li>硬件算力的发展</li>
</ol>
</div>
<div id="非线性问题" class="section level2 hasAnchor" number="21.2">
<h2><span class="header-section-number">21.2</span> 非线性问题<a href="前馈神经网络.html#非线性问题" class="anchor-section" aria-label="Anchor link to header"></a></h2>
<p>对于非线性的问题,有三种方法:</p>
<ol style="list-style-type: decimal">
<li>非线性转换,将低维空间转换到高维空间(Cover 定理),从而变为一个线性问题。</li>
<li>核方法,由于非线性转换是变换为高维空间,因此可能导致维度灾难,并且可能很难得到这个变换函数,核方法不直接寻找这个转换,而是寻找一个内积。</li>
<li>神经网络方法,将复合运算变为基本的线性运算的组合。</li>
</ol>
</div>
</div>
</section>
</div>
</div>
</div>
<a href="谱聚类.html" class="navigation navigation-prev " aria-label="Previous page"><i class="fa fa-angle-left"></i></a>
<a href="配分函数.html" class="navigation navigation-next " aria-label="Next page"><i class="fa fa-angle-right"></i></a>
</div>
</div>
<script src="libs/gitbook-2.6.7/js/app.min.js"></script>
<script src="libs/gitbook-2.6.7/js/clipboard.min.js"></script>
<script src="libs/gitbook-2.6.7/js/plugin-search.js"></script>
<script src="libs/gitbook-2.6.7/js/plugin-sharing.js"></script>
<script src="libs/gitbook-2.6.7/js/plugin-fontsettings.js"></script>
<script src="libs/gitbook-2.6.7/js/plugin-bookdown.js"></script>
<script src="libs/gitbook-2.6.7/js/jquery.highlight.js"></script>
<script src="libs/gitbook-2.6.7/js/plugin-clipboard.js"></script>
<script>
gitbook.require(["gitbook"], function(gitbook) {
gitbook.start({
"sharing": {
"github": false,
"facebook": true,
"twitter": true,
"linkedin": false,
"weibo": false,
"instapaper": false,
"vk": false,
"whatsapp": false,
"all": ["facebook", "twitter", "linkedin", "weibo", "instapaper"]
},
"fontsettings": {
"theme": "white",
"family": "sans",
"size": 2
},
"edit": {
"link": null,
"text": null
},
"history": {
"link": null,
"text": null
},
"view": {
"link": null,
"text": null
},
"download": ["CBook.pdf"],
"search": {
"engine": "fuse",
"options": null
},
"toc": {
"collapse": "subsection"
}
});
});
</script>
<!-- dynamically load mathjax for compatibility with self-contained -->
<script>
(function () {
var script = document.createElement("script");
script.type = "text/javascript";
var src = "true";
if (src === "" || src === "true") src = "https://mathjax.rstudio.com/latest/MathJax.js?config=TeX-MML-AM_CHTML";
if (location.protocol !== "file:")
if (/^https?:/.test(src))
src = src.replace(/^https?:/, '');
script.src = src;
document.getElementsByTagName("head")[0].appendChild(script);
})();
</script>
</body>
</html>