-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsupervised_finetuning.py
201 lines (176 loc) · 6.85 KB
/
supervised_finetuning.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
"""
======================================================================
SUPERVISED_FINETUNING ---
SFT code, which is quite simpler to the original version.
Reference: https://huggingface.co/google/gemma-7b/blob/main/examples/example_sft_qlora.py
Author: Zi Liang <zi1415926.liang@connect.polyu.hk>
Copyright © 2024, ZiLiang, all rights reserved.
Created: 23 February 2024
======================================================================
"""
# ------------------------ Code --------------------------------------
from trl import SFTTrainer
from peft import LoraConfig
from datasets import load_dataset
from transformers import AutoTokenizer, HfArgumentParser, AutoModelForCausalLM, BitsAndBytesConfig, TrainingArguments
import torch
from dataclasses import dataclass, field
from typing import Optional
from pprint import pprint
import os
os.environ["CUDA_VISIBLE_DEVICES"] = "1,2,3"
hf_token = os.environ["HF_TOKEN"]
@dataclass
class ScriptArguments:
"""
These arguments vary depending on how many GPUs you have, what their capacity and features are, and what size model you want to train.
"""
per_device_train_batch_size: Optional[int] = field(default=1)
per_device_eval_batch_size: Optional[int] = field(default=1)
gradient_accumulation_steps: Optional[int] = field(default=4)
learning_rate: Optional[float] = field(default=2e-4)
max_grad_norm: Optional[float] = field(default=0.3)
weight_decay: Optional[int] = field(default=0.001)
lora_alpha: Optional[int] = field(default=16)
lora_dropout: Optional[float] = field(default=0.1)
lora_r: Optional[int] = field(default=8)
max_seq_length: Optional[int] = field(default=2048)
model_name: Optional[str] = field(
# default="google/gemma-7b",
default="openai-community/gpt2-xl",
metadata={
"help": "The model that you want to train from the Hugging Face hub. E.g. gpt2, gpt2-xl, bert, etc."
}
)
dataset_name: Optional[str] = field(
default="stingning/ultrachat",
metadata={"help": "The preference dataset to use."},
)
fp16: Optional[bool] = field(
default=True,
metadata={"help": "Enables fp16 training."},
)
bf16: Optional[bool] = field(
default=False,
metadata={"help": "Enables bf16 training."},
)
packing: Optional[bool] = field(
default=True,
metadata={"help": "Use packing dataset creating."},
)
gradient_checkpointing: Optional[bool] = field(
default=False,
metadata={"help": "Enables gradient checkpointing."},
)
use_flash_attention_2: Optional[bool] = field(
default=False,
metadata={"help": "Enables Flash Attention 2."},
)
optim: Optional[str] = field(
default="paged_adamw_32bit",
metadata={"help": "The optimizer to use."},
)
lr_scheduler_type: str = field(
default="constant",
metadata={
"help": "Learning rate schedule. Constant a bit better than cosine, and has advantage for analysis"},
)
max_steps: int = field(default=10000, metadata={
"help": "How many optimizer update steps to take"})
warmup_ratio: float = field(default=0.03, metadata={
"help": "Fraction of steps to do a warmup for"})
save_steps: int = field(default=1000, metadata={
"help": "Save checkpoint every X updates steps."})
logging_steps: int = field(default=500, metadata={
"help": "Log every X updates steps."})
output_dir: str = field(
default="./sft__results",
metadata={
"help": "The output directory where the model predictions and checkpoints will be written."},
)
def formatting_func(example):
text = f"### USER: {example['data'][0]}\n### ASSISTANT: {example['data'][1]}"
return text
def main():
parser = HfArgumentParser(ScriptArguments)
script_args = parser.parse_args_into_dataclasses()[0]
model_id = script_args.model_name
quantization_config = BitsAndBytesConfig(
# load_in_4bit=True,
load_in_4bit=False,
bnb_4bit_compute_dtype=torch.float16,
bnb_4bit_quant_type="nf4"
)
if not script_args.use_flash_attention_2:
attn_implementation = "sdpa"
else:
attn_implementation = "flash_attention_2"
# Load model
model = AutoModelForCausalLM.from_pretrained(
model_id,
quantization_config=quantization_config,
torch_dtype=torch.float32,
attn_implementation=attn_implementation,
token=hf_token,
)
# Load tokenizer
tokenizer = AutoTokenizer.from_pretrained(model_id)
tokenizer.pad_token_id = tokenizer.eos_token_id
lora_config = LoraConfig(
r=script_args.lora_r,
target_modules=["q_proj", "o_proj", "k_proj",
"v_proj", "gate_proj", "up_proj",
"down_proj"],
bias="none",
task_type="CAUSAL_LM",
lora_alpha=script_args.lora_alpha,
lora_dropout=script_args.lora_dropout
)
print("=====LORA ARGS=====")
pprint(lora_config)
print("=====Quantization ARGS=====")
pprint(quantization_config)
print("=====SCRIPT ARGS=====")
pprint(script_args)
dataset_name = script_args.dataset_name
# train_dataset = load_dataset(script_args.dataset_name,
# split="train[:1%]")
from training_data_collecting_openai import load_raw_train_datals
train_dataset = load_raw_train_datals(tokenizer)
# TODO: make that configurable
YOUR_HF_USERNAME = "liangzid"
output_dir = f"{YOUR_HF_USERNAME}/gemma-qlora-{dataset_name}"
output_dir = script_args.output_dir
training_arguments = TrainingArguments(
output_dir=output_dir,
per_device_train_batch_size=script_args.per_device_train_batch_size,
gradient_accumulation_steps=script_args.gradient_accumulation_steps,
optim=script_args.optim,
save_steps=script_args.save_steps,
logging_steps=script_args.logging_steps,
learning_rate=script_args.learning_rate,
max_grad_norm=script_args.max_grad_norm,
max_steps=script_args.max_steps,
warmup_ratio=script_args.warmup_ratio,
lr_scheduler_type=script_args.lr_scheduler_type,
gradient_checkpointing=script_args.gradient_checkpointing,
fp16=script_args.fp16,
bf16=script_args.bf16,
)
trainer = SFTTrainer(
model=model,
args=training_arguments,
train_dataset=train_dataset,
peft_config=lora_config,
packing=script_args.packing,
dataset_text_field="id",
tokenizer=tokenizer,
max_seq_length=script_args.max_seq_length,
formatting_func=formatting_func,
)
trainer.train()
trainer.save_model(output_dir)
# running entry
if __name__ == "__main__":
main()
print("EVERYTHING DONE.")