-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_pod3.py
537 lines (457 loc) · 20 KB
/
train_pod3.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
"""
======================================================================
TRAIN_POD3 ---
Beyond `train_pod2.py`, we add unlabeled samples to simulate the attack
procedure.
Author: Zi Liang <zi1415926.liang@connect.polyu.hk>
Copyright © 2024, ZiLiang, all rights reserved.
Created: 1 April 2024
======================================================================
"""
# ------------------------ Code --------------------------------------
import torch
# import json
from torch.utils.tensorboard import SummaryWriter
# from torch.distributions import Categorical
from torch.utils.data import TensorDataset, DataLoader
from tqdm import tqdm
import math
import time
# import argparse
# from transformers import AutoModelForCausalLM
# from transformers import AutoModelForSequenceClassification
# from transformers import AutoModelForTokenClassification
# from transformers import AutoTokenizer, AutoConfig, AutoModel
# from training_data_collecting_openai import load_raw_train_datals
# from training_data_collecting_openai import load_steal_datals
# from glue_process import load_glue_datals
from sequence_utils import my_padding, my_padding_logits
from sequence_utils import my_padding_token_dist
from sequence_utils import my_padding_logit
import torch.nn.functional as F
# from rlhf_train import clip, log_clip
import random
from rlhf_train import clip, log_clip
from train_pod2 import one_period
import logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
print = logger.info
def random_take(num, ls, seed,):
random.seed(seed)
random.shuffle(ls)
if num >= len(ls):
return ls
return ls[:num]
def train(lm, lm_tokenizer, args,
raw_train_datals,
nonlabel_trainls,
max_new_tokens=16):
sub_stage_num = args.sub_stage_num
steps = sub_stage_num*args.sub_set_num *\
args.period_num
print(f"OVERALL STEPS: {steps}.")
p_i_11_ls = None
p_i_12_ls = None
p_m_11_ls = None
p_m_12_ls = None
p_logits_11_ls = None
p_logits_12_ls = None
p_i2ls = None
pmask2s = None
p_logits2ls = None
p_vic_logits2ls = None
for ssn in range(sub_stage_num):
lm, p_i_11_ls, p_i_12_ls, p_m_11_ls,\
p_m_12_ls, p_logits_11_ls, p_logits_12_ls,\
p_i2ls, pmask2s, p_logits2ls, p_vic_logits2ls\
= train_pod(lm, lm_tokenizer,
args,
raw_train_datals,
nonlabel_trainls,
max_new_tokens,
p_i_11_ls, p_i_12_ls, p_m_11_ls,
p_m_12_ls, p_logits_11_ls, p_logits_12_ls,
p_i2ls, pmask2s, p_logits2ls, p_vic_logits2ls
)
if (ssn+1) % 3 == 0:
print(f" -->NOW save the ckpt in stage {ssn}.")
lm_tokenizer.save_pretrained(args.save_path +
"___period"+str(ssn))
lm.save_pretrained(args.save_path +
"___period"+str(ssn))
def train_pod(lm,
lm_tokenizer,
args,
raw_train_datals,
nonlabel_trainls,
max_new_tokens,
p_i_11_ls, p_i_12_ls, p_m_11_ls,
p_m_12_ls, p_logits_11_ls, p_logits_12_ls,
p_i2ls, pmask2s, p_logits2ls, p_vic_logits2ls
):
print(">>>> DATA PREPERATION")
tau1 = args.tau1
tau2 = args.tau2
print(f" Tau1: {tau1}\t Tau2: {tau2}.")
# STEP 1: DATA Preperation.
ITER_num = args.period_num
tb_writer = SummaryWriter(log_dir=args.save_path+"___log_writer")
op_ls, oidx2ls, ologits2ls, oidx2_dist = raw_train_datals
ul_p_ls, _, _, _ = raw_train_datals
subset_num = args.sub_set_num
# 1. in every period, random take a subset.
seed = time.time()
p_ls = random_take(subset_num, op_ls, seed,)
idx2ls = random_take(subset_num, oidx2ls, seed)
vic_logits2ls = random_take(subset_num, ologits2ls, seed)
idx2_dist = random_take(subset_num, oidx2_dist, seed)
ulpls = random_take(subset_num, ul_p_ls, seed)
need_pre_store = 0
if p_i_11_ls is None:
p_i_11_ls = []
p_i_12_ls = []
p_logits_11_ls = []
p_logits_12_ls = []
p_m_11_ls = []
p_m_12_ls = []
need_pre_store = 1
period_break = 0
p_i2ls = []
pmask2s = []
p_logits2ls = []
p_vic_logits2ls = []
else:
period_break = 1
for iter_idx in range(ITER_num):
tensorboard_name = f"Period {iter_idx}"
idxs11_ls = []
idxs12_ls = []
old_logits11_ls = []
old_logits12_ls = []
old_logits2_ls = []
# 2. generate
with torch.no_grad():
for i, prompt in tqdm(enumerate(p_ls),
desc="Data Collecting..."):
prompt = prompt.to(args.device).unsqueeze(0)
# Generate New Tokens
idxs12 = lm.generate(prompt,
do_sample=True,
max_length=args.max_length,
max_new_tokens=max_new_tokens,
# temperature=args.temperature,
)
idxs11 = lm.generate(prompt,
do_sample=True,
max_length=args.max_length,
max_new_tokens=max_new_tokens,
# temperature=args.temperature,
)
bs, sqqql = idxs11.shape
# print(idxs1)
print(f"idxs11 {lm_tokenizer.decode(idxs11[0])}")
print(f"idxs12 {lm_tokenizer.decode(idxs12[0])}")
old_logits11 = lm(idxs11[:, :-1]).logits
old_logits11 = F.log_softmax(old_logits11, dim=-1)
old_logits11 = old_logits11[
torch.arange(1).unsqueeze(1),
torch.arange(sqqql-1).unsqueeze(0),
idxs11[:, 1:sqqql]
]
bs, sqqql2 = idxs12.shape
old_logits12 = lm(idxs12[:, :-1]).logits
old_logits12 = F.log_softmax(old_logits12, dim=-1)
old_logits12 = old_logits12[
torch.arange(1).unsqueeze(1),
torch.arange(sqqql2-1).unsqueeze(0),
idxs12[:, 1:sqqql2]
]
idxs2 = torch.tensor(idx2ls[i], dtype=torch.long)\
.to(args.device).unsqueeze(0)
print(f"idxs2 {lm_tokenizer.decode(idxs2[0])}")
old_logits2 = lm(idxs2[:, :-1]).logits
old_logits2 = F.log_softmax(old_logits2, dim=-1)
bs, sql2 = idxs2.shape
old_logits2 = old_logits2[
torch.arange(1).unsqueeze(1),
torch.arange(sql2-1).unsqueeze(0),
idxs2[:, 1:sql2]
]
idxs11_ls.append(idxs11.squeeze(0).to("cpu"))
idxs12_ls.append(idxs12.squeeze(0).to("cpu"))
old_logits11_ls.append(old_logits11
.squeeze(0).to("cpu"))
old_logits12_ls.append(old_logits12
.squeeze(0).to("cpu"))
old_logits2_ls.append(old_logits2.squeeze(0).to("cpu"))
for i, prompt in tqdm(enumerate(ulpls),
"collecting unlabeled data",
):
# SKIP the first stage of training.
if need_pre_store == 1:
break
prompt = prompt.to(args.device).unsqueeze(0)
idxs12 = lm.generate(prompt,
do_sample=True,
max_length=args.max_length,
max_new_tokens=max_new_tokens,
# temperature=args.temperature,
)
idxs11 = lm.generate(prompt,
do_sample=True,
max_length=args.max_length,
max_new_tokens=max_new_tokens,
# temperature=args.temperature,
)
bs, sqqql = idxs11.shape
# print(idxs1)
print(f"UL-idxs11 {lm_tokenizer.decode(idxs11[0])}")
print(f"UL-idxs12 {lm_tokenizer.decode(idxs12[0])}")
old_logits11 = lm(idxs11[:, :-1]).logits
old_logits11 = F.log_softmax(old_logits11, dim=-1)
old_logits11 = old_logits11[
torch.arange(1).unsqueeze(1),
torch.arange(sqqql-1).unsqueeze(0),
idxs11[:, 1:sqqql]
]
bs, sqqql2 = idxs12.shape
old_logits12 = lm(idxs12[:, :-1]).logits
old_logits12 = F.log_softmax(old_logits12, dim=-1)
old_logits12 = old_logits12[
torch.arange(1).unsqueeze(1),
torch.arange(sqqql2-1).unsqueeze(0),
idxs12[:, 1:sqqql2]
]
idxs11_ls.append(idxs11.squeeze(0).to("cpu"))
idxs12_ls.append(idxs12.squeeze(0).to("cpu"))
old_logits11_ls.append(old_logits11
.squeeze(0).to("cpu"))
old_logits12_ls.append(old_logits12
.squeeze(0).to("cpu"))
old_logits2_ls.append(old_logits2.squeeze(0).to("cpu"))
# do truncations and paddings.
# max_token_num_11 = min(args.max_length,
# max([len(x) for x in p_i_11_ls]))
# max_token_num_12 = min(args.max_length,
# max([len(x) for x in p_i_12_ls]))
# max_token_num_2 = min(args.max_length,
# max([len(x) for x in p_i2ls]))
cmax_token_num_2 = min(args.max_length,
max([len(x) for x in idx2ls]))
cmax_token_num_11 = min(args.max_length,
max([len(x) for x in idxs11_ls]))
cmax_token_num_12 = min(args.max_length,
max([len(x) for x in idxs12_ls]))
max_token_num = max(cmax_token_num_2, cmax_token_num_11)
max_token_num = max(max_token_num, cmax_token_num_12)
print(f"max_token_num: {max_token_num}")
pad_idx = lm_tokenizer.pad_token_id
templs=[]
templs.extend(p_ls)
if need_pre_store==0:
templs.extend(ulpls)
idx2ls, mask2 = my_padding(idx2ls, p_ls,
max_token_num, pad_idx)
idxs11_ls, mask11 = my_padding(idxs11_ls,
templs, max_token_num, pad_idx)
idxs12_ls, mask12 = my_padding(idxs12_ls,
templs, max_token_num, pad_idx)
old_logits11_ls = my_padding_logit(old_logits11_ls,
max_token_num-1, pad_idx)
old_logits12_ls = my_padding_logit(old_logits12_ls,
max_token_num-1, pad_idx)
old_logits2_ls = my_padding_logit(old_logits2_ls,
max_token_num-1, pad_idx)
# p_i_11_ls, p_m_11_ls = my_padding(p_i_11_ls,
# p_ls,
# max_token_num, pad_idx)
# p_i_12_ls, p_m_12_ls = my_padding(p_i_12_ls,
# p_ls,
# max_token_num, pad_idx)
# p_logits_11_ls = my_padding_logit(p_logits_11_ls,
# max_token_num-1,
# pad_idx)
# p_logits_12_ls = my_padding_logit(p_logits_12_ls,
# max_token_num-1,
# pad_idx)
newvic_logits2ls = []
for per_data in vic_logits2ls:
sl = len(per_data)
v = len(per_data[0])
tmp_ts = torch.ones((sl, v), dtype=torch.float)
for jjjj, per_token_logit in enumerate(per_data):
tmp_ts[jjjj] = torch.tensor(per_token_logit,)
newvic_logits2ls.append(tmp_ts)
vic_logits2ls = my_padding_logits(newvic_logits2ls,
max_token_num-1, pad_idx)
idxs2_dist = my_padding_token_dist(idx2_dist,
max_token_num-1, pad_idx)
# print(f"{old_logits11_ls.shape}")
# ---------------------------------------------------------
# now fix the logic of constructive two samples
if need_pre_store == 1:
need_pre_store = 0
# at first stage, we have no previous stage, so we use
# the ground truth in current stage.
p_i_11_ls = idx2ls # absolute positive label
p_i_12_ls = idxs12_ls
p_logits_11_ls = old_logits2_ls
p_logits_12_ls = old_logits12_ls
p_m_11_ls = mask2
p_m_12_ls = mask12
p_i2ls = idx2ls
pmask2s = mask2
p_logits2ls = old_logits2_ls
p_vic_logits2ls = vic_logits2ls
# Dataset what we seen is about the last stage,
# not current stage.
# If it is the first stage, then we use the victim's label
# to guide the training, for a better bootstrapping.
trainset = TensorDataset(
p_i_11_ls,
p_i_12_ls,
p_i2ls,
p_m_11_ls,
p_m_12_ls,
pmask2s,
p_logits_11_ls,
p_logits_12_ls,
p_logits2ls,
p_vic_logits2ls,
)
# reuse the tensors in current stage as the training dataset
# for next stage.
p_i_11_ls = idxs11_ls
p_i_12_ls = idxs12_ls
p_i2ls = idx2ls
p_m_11_ls = mask11
p_m_12_ls = mask12
pmask2s = mask2
p_logits_11_ls = old_logits11_ls
p_logits_12_ls = old_logits12_ls
p_logits2ls = old_logits2_ls
p_vic_logits2ls = vic_logits2ls
if period_break == 1:
print("\n\n NOW BREAK SINCE ENOUGH TRAINING\n\n")
return lm, p_i_11_ls, p_i_12_ls, p_m_11_ls,\
p_m_12_ls, p_logits_11_ls, p_logits_12_ls,\
p_i2ls, pmask2s, p_logits2ls, p_vic_logits2ls
loader = DataLoader(trainset,
batch_size=args.batch_size,
shuffle=True,
)
print(">>>> Period {}".format(iter_idx))
lm = one_period(args, lm,
lm_tokenizer,
loader,
args.epoch, args.device,
tb_writer,
tensorboard_name,
args.save_path,
args.LR,
args.acc_step, args.log_step,
args.save_step,
args.beta,
is_black_box=1,
method="LoRD-II-no_vic",
)
elif need_pre_store == 0:
for i, prompt in enumerate(p_ls):
pidx11 = p_i_11_ls[i].unsqueeze(0).to(args.device)
pidx12 = p_i_12_ls[i].unsqueeze(0).to(args.device)
llh1 = lm(pidx11,
# p_m_11_ls[i].unsqueeze(0).to(args.device),
labels=pidx11).loss
llh2 = lm(pidx12,
# p_m_12_ls[i].unsqueeze(0).to(args.device),
labels=pidx12).loss
sl = pidx12.shape[1]
m11_num = float(torch.sum(p_m_11_ls[i, :-1]))
m12_num = float(torch.sum(p_m_12_ls[i, :-1]))
print(f"num_m11: {m11_num}\t num_m12: {m12_num}")
print(f"p_m_12_ls[i]: {p_m_12_ls[i]}")
print(">>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>")
print(f"likelihood, 1: {llh1/sl}, 2: {llh2/sl}")
if llh2 < llh1:
print("SWAP.")
p_i_11_ls[i] = pidx12.squeeze(0).to("cpu")
p_i_12_ls[i] = pidx11.squeeze(0).to("cpu")
temppp = p_logits_11_ls[i]
p_logits_11_ls[i] = p_logits_12_ls[i]
p_logits_12_ls[i] = temppp
temppp = p_m_11_ls[i]
p_m_11_ls[i] = p_m_12_ls[i]
p_m_12_ls[i] = temppp
if min(llh1/m11_num, llh2/m12_num) > -math.log(tau1):
print("BUT still use the VIC's labels.")
# print(f"shape of 11: {p_i_11_ls.shape}")
# print(f"shape of 2: {idx2ls.shape}")
# print(f"shape of 12: {p_i_12_ls.shape}")
p_i_11_ls[i] = p_i2ls[i]
p_m_11_ls[i] = pmask2s[i]
p_logits_11_ls[i] = p_logits2ls[i]
if min(llh1/m11_num, llh2/m12_num) > -math.log(tau2):
period_break = 0
# Dataset what we seen is about the last stage,
# not current stage.
# If it is the first stage, then we use the victim's label
# to guide the training, for a better bootstrapping.
trainset = TensorDataset(
p_i_11_ls,
p_i_12_ls,
p_i_11_ls,
p_m_11_ls,
p_m_12_ls,
p_m_11_ls,
p_logits_11_ls,
p_logits_12_ls,
p_logits_11_ls,
p_logits_11_ls,
)
# reuse the tensors in current stage as the training dataset
# for next stage.
p_i_11_ls = idxs11_ls
p_i_12_ls = idxs12_ls
p_i2ls = idx2ls
p_m_11_ls = mask11
p_m_12_ls = mask12
pmask2s = mask2
p_logits_11_ls = old_logits11_ls
p_logits_12_ls = old_logits12_ls
p_logits2ls = old_logits2_ls
p_vic_logits2ls = vic_logits2ls
if period_break == 1:
print("\n\n NOW BREAK SINCE ENOUGH TRAINING\n\n")
return lm, p_i_11_ls, p_i_12_ls, p_m_11_ls,\
p_m_12_ls, p_logits_11_ls, p_logits_12_ls,\
p_i2ls, pmask2s, p_logits2ls, p_vic_logits2ls
loader = DataLoader(trainset,
batch_size=args.batch_size,
shuffle=True,
)
print(">>>> Period {}".format(iter_idx))
lm = one_period(args, lm,
lm_tokenizer,
loader,
args.epoch, args.device,
tb_writer,
tensorboard_name,
args.save_path,
args.LR,
args.acc_step, args.log_step,
args.save_step,
args.beta,
is_black_box=1,
method="LoRD-II-no_vic",
)
need_pre_store = 0
# lm_tokenizer.save_pretrained(args.save_path+"___finally")
# lm.save_pretrained(args.save_path+"___finally")
return lm, p_i_11_ls, p_i_12_ls, p_m_11_ls,\
p_m_12_ls, p_logits_11_ls, p_logits_12_ls,\
p_i2ls, pmask2s, p_logits2ls, p_vic_logits2ls
# running entry
if __name__ == "__main__":
# main()
print("EVERYTHING DONE.")