-
Notifications
You must be signed in to change notification settings - Fork 20
/
Copy pathns_analyse.py
executable file
·96 lines (88 loc) · 3.77 KB
/
ns_analyse.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
#!/usr/bin/env python3
from __future__ import print_function
import numpy as np, fileinput, itertools, sys
def read_inputs(args, line_skip=0, line_end=None, interval=1):
inputs = fileinput.input(files=args)
fields = inputs.readline().split()
if len(fields) == 3:
(n_walkers, n_cull, n_Extra_DOF) = fields
flat_V_prior = "False"
N_atoms = "0"
elif len(fields) == 5:
(n_walkers, n_cull, n_Extra_DOF, flat_V_prior, N_atoms) = fields
else:
raise ValueError("unknown number of fields %d (not 3 or 5) in first line of energies file" % len(fields))
n_walkers = int(n_walkers)
n_cull = int(n_cull)
n_Extra_DOF = int(n_Extra_DOF)
if flat_V_prior.lower() == "t" or flat_V_prior.lower() == "true":
flat_V_prior = True
elif flat_V_prior.lower() == "f" or flat_V_prior.lower() == "false":
flat_V_prior = False
else:
sys.stderr.write("Unknown flat_V_prior string '%s'\n" % flat_V_prior)
sys.exit(1)
N_atoms = int(N_atoms)
Es=[]
Vs=[]
lines = itertools.islice(inputs, line_skip, line_end, interval)
n_fields = None
for line in lines:
fields = line.split()
if n_fields is not None and n_fields != len(fields):
sys.stderr.write(f'Mismatch field # prev {n_fields} cur {len(fields)}, skipping\n')
continue
if len(fields) == 3:
try:
E = float(fields[1])
V = float(fields[2])
except:
continue
if n_fields is None:
n_fields = 3
Es.append(E)
Vs.append(V)
elif len(fields) == 2:
try:
E = float(fields[1])
except:
continue
if n_fields is None:
n_fields = 2
Es.append(E)
else: # silently skip lines with problems
sys.stderr.write("WARNING: input line with problem: number of fields not 2 or 3, or not floats\n")
continue
if len(Vs) == 0:
Vs = None
else:
Vs = np.array(Vs)
return (n_walkers, n_cull, n_Extra_DOF, flat_V_prior, N_atoms, np.array(Es), Vs)
def calc_log_a(n_Es, n_walkers, n_cull, interval=1):
# log_a = math.log(float(n_walkers)) - math.log(float(n_walkers+n_cull))
# From SENS paper PRX v. 4 p 031034 (2014) Eq. 3
i_range = np.array(range(n_Es*interval))
i_range_mod_n_cull = np.mod(i_range,n_cull)
i_range_plus_1_mod_n_cull = np.mod(i_range+1,n_cull)
# X_n = \prod_{i=0}^n \frac{N-i\%P}{N+1-i\%P}
# \log X_n = \sum_{i=0}^n \log (N-i\%P) - \log(N+1-i\%P)
log_X_n_term = np.log(n_walkers-i_range_mod_n_cull) - np.log(n_walkers+1-i_range_mod_n_cull)
log_X_n = np.cumsum(log_X_n_term)
# a_n = X_n - X_(n+1)
# a_n = \prod_{i=0}^n \frac{N-i\%P}{N+1-i\%P} \left(1 - \frac{N-(n+1)\%P}{N+1-(n+1)\%P}\right)
# \log(a_n) & = \sum_{i=0}^n \left[\log(N-i\%P)-\log(N+1-i\%P)\right] + \log\left(1-\frac{N-(n+1)\%P}{N+1-(n+1)\%P}\right) \\
# & = \log(X_n) + \log\left(1-\frac{N-(n+1)\%P}{N+1-(n+1)\%P}\right) \\
# & = \log(X_n) + \log\left( \frac{N+1-(n+1)\%P - N + (n+1)\%P}{N+1-(n+1)\%P} \right) \\
# & = \log(X_n) + \log \left( \frac{1}{N+1-(n+1)\%P} \right) \\
# & = \log(X_n) -\log \left( N+1-(n+1)\%P \right)
log_a = log_X_n[0::interval] - np.log(n_walkers+1-i_range_plus_1_mod_n_cull[0::interval])
return log_a
def calc_Z_terms(beta, log_a, Es, flat_V_prior=False, N_atoms=0, Vs=None):
#DEBUG for i in range(len(log_a)):
#DEBUG print "calc_Z_terms log_a ", log_a[i], beta*Es[i]
log_Z_term = log_a[:] - beta*Es[:]
if flat_V_prior:
log_Z_term += float(N_atoms)*np.log(Vs[:])
shift = np.amax(log_Z_term[:])
Z_term = np.exp(log_Z_term[:] - shift)
return (Z_term, shift)