-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdashboard.py
70 lines (65 loc) · 2.07 KB
/
dashboard.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
#from server import new_keywords
from preprocessing import preprocessing_french2
import numpy as np
import pandas as pd
import json
from keywords_extraction import extract_keywords2, extract_keywords_dashboard
from sentiment_analysis import sentiment_analysis, sentiment_analysis2
'''
get the data in a json format for keyboard extraction.
'''
#keywords
def keywords_count(keywords,isKeyword = False):
if isKeyword:
#transform to numpy array
x = np.array(keywords)
data = dict({})
labels = []
counts = []
#unique_list =
#get each keyword
for item in np.unique(x):
count = keywords.count(item)
if count >1:
labels.append(item)
counts.append(count)
#data[item] = count
#add to dictionaany
data["labels"] = labels
data["counts"] = counts
#print(data["count"])
#get dataframe from dict
df = pd.DataFrame.from_dict(data)
#sort by count of keywords, descending order
df = df.sort_values(by=['counts'],ascending=False)
return json.dumps(df.to_dict('list'))
#return 0
else:
#preprocess data
preprocessed = preprocessing_french2(keywords)
#
#print(extract_keywords2(preprocessed))
#get keywords add all to the same array
keywords = extract_keywords_dashboard(preprocessed)
print(keywords)
raw_data = sum(keywords,[])
print(raw_data)
data = keywords_count(raw_data,True)
return json.dumps(data)
#sentiments
def sentiments_count(array,isSentiment=False):
if isSentiment:
x = np.array(array)
data = dict({})
labels = []
counts=[]
#unique_list =
for item in np.unique(x):
counts.append(array.count(item))
labels.append(item)
data["labels"] = labels
data["counts"] = counts
return json.dumps(data)
else:
data = sentiments_count(sentiment_analysis2(array),True)
return json.dumps(data)