-
Notifications
You must be signed in to change notification settings - Fork 88
/
Copy pathtrain.py
347 lines (290 loc) · 12.2 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
# -*- coding: utf-8 -*-
'''
Project:
Can GCNs Go as Deep as CNNs?
https://sites.google.com/view/deep-gcns
http://arxiv.org/abs/1904.03751
Author:
Guohao Li, Matthias Müller, Ali K. Thabet and Bernard Ghanem.
King Abdullah University of Science and Technology.
'''
import os
import sys
BASE_DIR = os.path.dirname(os.path.abspath(__file__))
ROOT_DIR = os.path.dirname(BASE_DIR)
sys.path.append(BASE_DIR)
sys.path.append(ROOT_DIR)
sys.path.append(os.path.join(ROOT_DIR, 'utils'))
sys.path.append(os.path.join(ROOT_DIR, 'gcn_lib'))
import numpy as np
import tensorflow as tf
import tf_util
import sem_seg_util
import provider
import tf_vertex
import tf_edge
from tf_nn import MLP
from gcn_utils import VertexLayer
from gcn_utils import EdgeLayer
from functools import partial, update_wrapper
FLAGS = sem_seg_util.parse_args()
print(FLAGS)
# Files setup
DATASET = FLAGS.dataset
TEST_AREA = str(FLAGS.test_area)
MODEL_FILE = FLAGS.model
model_builder = __import__(MODEL_FILE)
LOG_DIR = FLAGS.log_dir
CHECKPOINT = FLAGS.checkpoint
if not os.path.exists(LOG_DIR):
os.makedirs(LOG_DIR)
os.system('cp ' + MODEL_FILE + '.py' ' %s/model.py' % (LOG_DIR))
os.system('cp train.py %s' % (LOG_DIR))
if (CHECKPOINT != ''):
LOG_FOUT = open(os.path.join(LOG_DIR, 'log_train.txt'), 'a')
else:
LOG_FOUT = open(os.path.join(LOG_DIR, 'log_train.txt'), 'w')
LOG_FOUT.write(str(FLAGS)+'\n')
# Training Settings
TOWER_NAME = FLAGS.tower_name
NUM_GPU = FLAGS.num_gpu
BATCH_SIZE = FLAGS.batch_size
NUM_POINTS = FLAGS.num_points
NUM_LAYERS = FLAGS.num_layers
NUM_CLASSES = FLAGS.num_classes
MAX_EPOCH = FLAGS.max_epoch
OPTIMIZER = FLAGS.optimizer
BASE_LEARNING_RATE = FLAGS.learning_rate
MOMENTUM = FLAGS.momentum
DECAY_STEP = FLAGS.decay_step
DECAY_RATE = FLAGS.decay_rate
BN_INIT_DECAY = FLAGS.bn_init_decay
BN_DECAY_DECAY_RATE = FLAGS.bn_decay_decay_rate
BN_DECAY_DECAY_STEP = FLAGS.bn_decay_decay_step
BN_DECAY_CLIP = FLAGS.bn_decay_clip
# GCN parameters
NUM_NEIGHBORS = FLAGS.num_neighbors
if (len(NUM_NEIGHBORS) < NUM_LAYERS):
while (len(NUM_NEIGHBORS) < NUM_LAYERS):
NUM_NEIGHBORS.append(NUM_NEIGHBORS[-1])
NUM_FILTERS = FLAGS.num_filters
if (len(NUM_FILTERS) < NUM_LAYERS):
while (len(NUM_FILTERS) < NUM_LAYERS):
NUM_FILTERS.append(NUM_FILTERS[-1])
DILATIONS = FLAGS.dilations
if DILATIONS[0] < 0:
DILATIONS = [1] + list(range(1, NUM_LAYERS))
elif (len(DILATIONS) < NUM_LAYERS):
while (len(DILATIONS) < NUM_LAYERS):
DILATIONS.extend(DILATIONS)
while (len(DILATIONS) > NUM_LAYERS):
DILATIONS.pop()
STOCHASTIC_DILATION = FLAGS.stochastic_dilation
STO_DILATED_EPSILON = FLAGS.sto_dilated_epsilon
SKIP_CONNECT = FLAGS.skip_connect
EDGE_LAY = FLAGS.edge_lay
GCN = FLAGS.gcn
if GCN == "mrgcn":
print("Using max relative gcn")
elif GCN == 'edgeconv':
print("Using edgeconv gcn")
elif GCN == 'graphsage':
NORMALIZE_SAGE = FLAGS.normalize_sage
print("Using graphsage with normalize={}".format(NORMALIZE_SAGE))
elif GCN == 'gin':
ZERO_EPSILON_GIN = FLAGS.zero_epsilon_gin
print("Using gin with zero epsilon={}".format(ZERO_EPSILON_GIN))
else:
raise Exception("Unknow gcn")
if DATASET == 'vkitti':
print("Training on vKITTI") # NUM_CLASSES should be 14
ALL_FILES = provider.getDataFiles('vkitti_hdf5/all_files.txt')
ROOM_FILELIST = [line.rstrip() for line in open('vkitti_hdf5/room_filelist.txt')]
elif DATASET == 's3dis':
print("Training on Stanford 3D Indoor Spaces Dataset") # NUM_CLASSES should be 13
ALL_FILES = provider.getDataFiles('indoor3d_sem_seg_hdf5_data/all_files.txt')
ROOM_FILELIST = [line.rstrip() for line in open('indoor3d_sem_seg_hdf5_data/room_filelist.txt')]
else:
raise Exception("Unknown dataset")
print('Room files length {}'.format(len(ROOM_FILELIST)))
train_data, train_label, test_data, test_label = sem_seg_util.load_data(ALL_FILES, ROOM_FILELIST, TEST_AREA)
print("Train set shape inputs {}, labels {}".format(train_data.shape, train_label.shape))
print("Test set shape inputs {}, labels {}".format(test_data.shape, test_label.shape))
def wrapped_partial(func, *args, **kwargs):
partial_func = partial(func, *args, **kwargs)
update_wrapper(partial_func, func)
return partial_func
def train():
with tf.Graph().as_default(), tf.device('/cpu:0'):
batch = tf.Variable(0, trainable=False)
learning_rate = tf_util.get_learning_rate(batch,
BASE_LEARNING_RATE,
BATCH_SIZE,
DECAY_STEP,
DECAY_RATE)
tf.summary.scalar('learning_rate', learning_rate)
bn_decay = tf_util.get_bn_decay(batch,
BN_INIT_DECAY,
BATCH_SIZE,
BN_DECAY_DECAY_STEP,
BN_DECAY_DECAY_RATE,
BN_DECAY_CLIP)
tf.summary.scalar('bn_decay', bn_decay)
if OPTIMIZER == 'momentum':
print('Using SGD with Momentum as optimizer')
trainer = tf.train.MomentumOptimizer(learning_rate=learning_rate, momentum=MOMENTUM)
elif OPTIMIZER == 'adam':
print('Using Adam as optimizer')
trainer = tf.train.AdamOptimizer(learning_rate)
else:
raise Exception("Unknown optimizer")
tower_grads = []
inputs_phs = []
labels_phs = []
is_training_phs =[]
with tf.variable_scope(tf.get_variable_scope()):
for i in range(NUM_GPU):
with tf.device('/gpu:%d' % i):
with tf.name_scope('%s_%d' % (TOWER_NAME, i)) as scope:
# Configure the neural network using every layers
nn = MLP(kernel_size=[1,1],
stride=[1,1],
padding='VALID',
weight_decay=0.0,
bn=True,
bn_decay=bn_decay,
is_dist=True)
# Configure the gcn vertex layer object
if GCN == 'mrgcn':
v_layer = tf_vertex.max_relat_conv_layer
elif GCN == 'edgeconv':
v_layer = tf_vertex.edge_conv_layer
elif GCN == 'graphsage':
v_layer = wrapped_partial(tf_vertex.graphsage_conv_layer,
normalize=NORMALIZE_SAGE)
elif GCN == 'gin':
v_layer = wrapped_partial(tf_vertex.gin_conv_layer,
zero_epsilon=ZERO_EPSILON_GIN)
else:
raise Exception("Unknown gcn type")
v_layer_builder = VertexLayer(v_layer,
nn)
# Configure the gcn edge layer object
if EDGE_LAY == 'dilated':
e_layer = wrapped_partial(tf_edge.dilated_knn_graph,
stochastic=STOCHASTIC_DILATION,
epsilon=STO_DILATED_EPSILON)
elif EDGE_LAY == 'knn':
e_layer = tf_edge.knn_graph
else:
raise Exception("Unknown edge layer type")
distance_metric = tf_util.pairwise_distance
e_layer_builder = EdgeLayer(e_layer,
distance_metric)
# Get the whole model builer
model_obj = model_builder.Model(BATCH_SIZE,
NUM_POINTS,
NUM_LAYERS,
NUM_NEIGHBORS,
NUM_FILTERS,
NUM_CLASSES,
vertex_layer_builder=v_layer_builder,
edge_layer_builder=e_layer_builder,
mlp_builder=nn,
skip_connect=SKIP_CONNECT,
dilations=DILATIONS)
inputs_ph = model_obj.inputs
labels_ph = model_obj.labels
is_training_ph = model_obj.is_training
pred = model_obj.pred
inputs_phs.append(inputs_ph)
labels_phs.append(labels_ph)
is_training_phs.append(is_training_ph)
loss = model_obj.get_loss(pred, labels_phs[-1])
tf.summary.scalar('loss', loss)
correct = tf.equal(tf.argmax(pred, 2), tf.to_int64(labels_phs[-1]))
accuracy = tf.reduce_sum(tf.cast(correct, tf.float32)) / float(BATCH_SIZE*NUM_POINTS)
tf.summary.scalar('accuracy', accuracy)
tf.get_variable_scope().reuse_variables()
grads = trainer.compute_gradients(loss)
tower_grads.append(grads)
grads = tf_util.average_gradients(tower_grads)
train_op = trainer.apply_gradients(grads, global_step=batch)
saver = tf.train.Saver(tf.global_variables(), sharded=True, max_to_keep=None)
# Create a session
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
config.allow_soft_placement = True
sess = tf.Session(config=config)
# Add summary writers
merged = tf.summary.merge_all()
train_writer = tf.summary.FileWriter(os.path.join(LOG_DIR, 'train'),
sess.graph)
test_writer = tf.summary.FileWriter(os.path.join(LOG_DIR, 'test'))
# Init variables on GPUs
init = tf.group(tf.global_variables_initializer(),
tf.local_variables_initializer())
sess.run(init)
if (CHECKPOINT != ''):
saver.restore(sess, CHECKPOINT)
sem_seg_util.log_string(LOG_FOUT, "Model restored.")
start_epoch = int(CHECKPOINT.split('.')[0].split('epoch_')[1])
print('Resuming from epoch: {}'.format(start_epoch))
else:
start_epoch = 0
ops = {'inputs_phs': inputs_phs,
'labels_phs': labels_phs,
'is_training_phs': is_training_phs,
'pred': pred,
'loss': loss,
'train_op': train_op,
'merged': merged,
'step': batch}
for epoch in range(start_epoch+1, MAX_EPOCH):
sem_seg_util.log_string(LOG_FOUT, '**** EPOCH %03d ****' % (epoch))
sys.stdout.flush()
train_one_epoch(sess, ops, train_writer)
# Save the variables to disk.
if epoch % 10 == 0:
save_path = saver.save(sess, os.path.join(LOG_DIR,'epoch_' + str(epoch)+'.ckpt'))
sem_seg_util.log_string(LOG_FOUT, "Model saved in file: %s" % save_path)
def train_one_epoch(sess, ops, train_writer):
""" ops: dict mapping from string to tf ops """
is_training = True
sem_seg_util.log_string(LOG_FOUT, '----')
current_data, current_label, _ = provider.shuffle_data(train_data[:,0:NUM_POINTS,:], train_label)
file_size = current_data.shape[0]
num_batches = file_size // (NUM_GPU * BATCH_SIZE)
total_correct = 0
total_seen = 0
loss_sum = 0
for batch_idx in range(num_batches):
if batch_idx % 100 == 0:
print('Current batch/total batch num: %d/%d'%(batch_idx,num_batches))
start_idx = []
end_idx = []
for gpu_idx in range(NUM_GPU):
start_idx.append((batch_idx + gpu_idx) * BATCH_SIZE)
end_idx.append((batch_idx + gpu_idx + 1) * BATCH_SIZE)
feed_dict = dict()
for gpu_idx in range(NUM_GPU):
feed_dict[ops['inputs_phs'][gpu_idx]] = current_data[start_idx[gpu_idx]:end_idx[gpu_idx], :, :]
feed_dict[ops['labels_phs'][gpu_idx]] = current_label[start_idx[gpu_idx]:end_idx[gpu_idx]]
feed_dict[ops['is_training_phs'][gpu_idx]] = is_training
summary, step, _, loss_val, pred_val = sess.run([ops['merged'],
ops['step'],
ops['train_op'],
ops['loss'],
ops['pred']],
feed_dict=feed_dict)
train_writer.add_summary(summary, step)
pred_val = np.argmax(pred_val, 2)
correct = np.sum(pred_val == current_label[start_idx[-1]:end_idx[-1]])
total_correct += correct
total_seen += (BATCH_SIZE*NUM_POINTS)
loss_sum += loss_val
sem_seg_util.log_string(LOG_FOUT, 'mean loss: %f' % (loss_sum / float(num_batches)))
sem_seg_util.log_string(LOG_FOUT, 'accuracy: %f' % (total_correct / float(total_seen)))
if __name__ == "__main__":
train()
LOG_FOUT.close()